KiXtart 2010

1
54 KiXtart 2010

KiXtart 2010 55

KiXtart 2010 (version 4.51)
…It’s full of scripts...
Contents

3Introduction
What’s New 3
KiXtart: Do You Care? 6
System Requirements 10
System Requirements 11
KiXtart 2010 Files 11
Installing KiXtart 11
To install KiXtart on the network 12
To install KiXtart on a client 12
Required files for Windows NT/2000/XP Clients 12
Required files for Windows 9x Clients 12
Uninstalling KiXtart 12
Updating from previous versions 12
Running KiXtart 13
Running KiXtart from a Batch File 14
Pre-tokenizing scripts 15
Locating Files 16
Troubleshooting KiXtart 16
Introduction 16
Common issues 16
Debug mode 18
Miscellaneous… 18
KiXtart and the console 18
COM automation in KiXtart 2010 19
Group-membership information. 21
General Syntax Rules 23
Block Commenting 23
Dynamic Program Variables 24
Expressions 27
KiXtart Command Reference 31
KiXtart Function Reference 53
KiXtart Macro Reference 113
APPENDIX A: KiXtart on Windows 9x 117
Thunking and the KiXtart RPC Service 117
Choosing Where to Install the KiXtart RPC Service 117
To install the KiXtart RPC service 119
Updating the KiXtart RPC service 119
Starting the KiXtart RPC Service 120
Known Problems of KiXtart on Windows 9x 120
The ‘MAP ROOT’ issue. 121
Running KiXtart with Lmscript Emulation 122
APPENDIX B: Error handling 124
Where to find more information 125
Acknowledgements 126
About KiXtart 127
Disclaimer and distribution information. 127

Introduction

KiXtart is a logon script processor and enhanced batch scripting language for computers running Windows Vista, Windows Server 2003, Windows XP, Windows 2000, Windows NT or Windows 9x in a Windows Networking environment.

The KiXtart free-format scripting language can be used to display information, set environment variables, start programs, connect to network drives, read or edit the registry change the current drive and directory and much more.

KiXtart was developed by Ruud van Velsen of Microsoft Netherlands.

What’s New

KiXtart 2010 is based on KiXtart 2001 and KiXtart 95, and is designed to be fully backward compatible. All functionality provided by KiXtart 2001 and most functionality provided by KiXtart 95 is available with KiXtart 2010.
KiXtart 2010 is a major update with various fixes and enhancements as well as a few new features. Please see the following paragraphs for a list of the fixes and new features that were added since KiXtart 2001.

Note

KiXtart 2010 is provided to you as CareWare. Please see the paragraph entitled "

KiXtart: Do You Care?
" for full details, and join the growing community of KiXtart CareWare supporters!
New commands, macros

INCLUDE
Enables you to organize script code into separate files and then use INCLUDE to add this code to any script.

@ONWOW64
Indicates if the current process is running in the WOW64 environment.

@TSSESSION
Indicates if the current process is running in a Terminal Server session.
Enhanced commands, functions, macros
AScan
Now supports an option to search for an ‘InStr’ match rather than an exact match.
EnumIPInfo
Now supports an option to re-read IP information.

GetFileSize, GetFileTime
Enhanced to operate on open files.

GetFileTime
Added an option to retrieve the creation, last write or last access time of a file.

@PRODUCTTYPE
Enhanced to support new versions of Windows.
@PRODUCTSUITE
Enhanced to support new versions of Windows.

Split
Now supports the case-sensitivity option. Also aligned the handling of an empty string as the delimiter with the way this is handled by Join.
Miscellaneous enhancements

Pre-tokenizing
KiXtart now supports the ability to store scripts in a pre-tokenized format. Pre-tokenized scripts load and run faster and are more secure as they are not humanly readable. See the paragraph on pre-tokenizing for more details.
Password protection
Pre-tokenized files can now be protected with a password.

New default extensions
Starting with this version, if you run a script without specifying a file-extension, KiXtart appends the new “.KX” extension and the “.KIX” extension (in that order). Note that KiXtart no longer appends the ‘.SCR’ extension.

New operators
Two new operators have been added: ‘^’ (XOR) and ‘~’ (binary NOT).
Debug mode
Debug mode has been enhanced to use the actual console size.
Block comments
Support for block commenting has been added.

Commandline processing
Commandline processing was enhanced so you can declare variables on the commandline and still have KiXtart automatically run a default script.
Note

For information about the latest changes to KiXtart 2010, see Kix2010.txt, in the Kix32 subdirectory.

KiXtart: Do You Care?

Introduction
KiXtart was started in 1991 as a spare time project in response to the many requests for logon scripting functionality for the Microsoft LAN Manager environment. KiXtart’s simplicity, speed and lack of competition soon made it very popular with LAN Manager network administrators.
KiXtart was initially distributed as freeware through bulletin boards in Europe. Later, Internet sites picked up on KiXtart and started distribution lists, discussion forums and script archives. KiXtart was also shipped as part of several Microsoft Resource Kits. Over time, KiXtart grew, both in popularity as well as in functionality. Windows NT and Windows 95 support was added, as well as lots of new functions and features.
Today, thousands of organizations worldwide use KiXtart. Banks, insurance companies, colleges, universities, hospitals, power plants, governmental organizations, IT companies, car manufacturers, oil companies, aerospace industries, publishers, amusement parks, broadcasting companies, and numerous other types of organizations around the globe make daily use of KiXtart to configure workstations, install software, and perform many other scripting tasks.

KiXtart has also become a hot topic on various Internet discussion forums, with many enthusiastic participants sharing tips, tricks and scripts.

Over the years, many people have asked when KiXtart would be commercialized. In fact, requests for pricing and licensing information on KiXtart are quite common.

If nothing else, all of this proves that KiXtart has a value.

Rather than commercializing KiXtart, I would like to turn its value into something truly positive. Specifically, I would like to use its value to help people who absolutely need and deserve our support: the people of Nepal.

As part of this initiative, KiXtart 2010 is provided to you as so-called CareWare. Exactly what this means is detailed in the following paragraphs. Please read the information carefully and support the KiXtart CareWare initiative!
What is CareWare?

CareWare is a variant on shareware and freeware. It is sometimes also known as 'charityware', 'donationware', 'helpware' or 'goodware', and is copyrighted software that you are allowed to use at no charge in return for a donation to specified charity/ies or to a charity of the users' choice.

KiXtart CareWare can be downloaded, installed and evaluated at no charge. If you continue using KiXtart, you are kindly requested to make a donation to a non-profit charitable organization. A list of preferred charities is provided below.
How much should we donate?

The answer to this question is in your heart. The donation amount should reflect your perception of the value of KiXtart for your organization. The suggested minimum donation amount is fifty US dollars ($50) per organization/company using KiXtart. Please consider that CareWare is not about making money, but about sharing with and caring for other people.
Making a donation is more important than the actual amount of the donation.
Note that in many countries, charitable donations to officially registered charities are tax deductible, so you may be able to donate more than you think!
Who should we donate to?

The following non-profit, charitable organizations that support the people in Nepal are preferred:
[image: image1.png]TN

Roomto Read

[image: image2.png]World change starts with educated children™

http://www.roomtoread.org/
Room to Read seeks to provide every child with an opportunity to gain the lifelong gift of literacy by attacking the root causes of illiteracy in Nepalese society.

A dedicated group of unpaid volunteers established the foundation in 1998. One village at a time, one school at a time, the Books for Nepal project is reaching out to communities to provide the gift of education.

[image: image3.png]

[image: image4.png]ROKPA INTERNATIONAL

http://www.rokpa.org
ROKPA INTERNATIONAL is a non-profit organization helping and supporting people in need irrespective of their nationality, religion or cultural background.

ROKPA INTERNATIONAL works in the areas of education, health care, relief of hunger and preservation of culture, self-help and ecology. The organization both offers emergency and long-term help through its projects in Nepal, Tibet and other countries.

If, for whatever reason, you can not donate to these particular organizations, you are kindly requested to donate to Unicef instead:
[image: image5.png]mmmm

http://www.unicef.org
For more than 53 years UNICEF has been helping governments, communities and families make the world a better place for children. Part of the United Nations system, UNICEF has an enviable mandate and mission, to advocate for children's rights and help meet their needs.

Note: more details on these organizations can be found in the GuideStar directory.
Why Nepal?

When I first visited Nepal in 1999, I became enchanted with its magnificent beauty and its kind and hospitable people. At the same time, I was stunned by the poverty.

Nepal, home of Mount Everest, is one of the poorest countries in the world in relative as well as absolute terms. More than half of the population lives below the poverty line and 53% of the people live on less than US$ 1 per day. Nepal has few natural resources apart from its beauty and hardworking people. Life expectancy is very low, and illiteracy affects more than 50% of the children. Education, medication, and even basic things such as clean water are a luxury in large parts of Nepal. Malnutrition is another widespread problem: everyday, a Nepali child goes blind for want of vitamin A, something that can be prevented by a medicine costing less than ten cents.

What do I get in return?

Of course, the whole concept of CareWare is about giving, not receiving. However, making a donation on behalf of KiXtart provides the following benefits:

· People elsewhere in the world benefit from your support.

· You get to feel good about using KiXtart.

· You motivate continued development of KiXtart.

Additionally, if you choose to register your donation, you will be kept up to date on KiXtart developments, and your (company) name can be included on the list of KiXtart CareWare sponsors. See below for details on how to register your donation.
How should we make a donation?

To make a donation, simply select the organization you would like to support, determine the amount you can donate, and use one of the donation methods supported by the organization.

When you make a donation, please include a reference to "KiXtart 2010".

Optionally, you can also register your donation by forwarding the confirmation email you send to or receive from the charitable organization to kixtart2001@hotmail.com or ruudv@microsoft.com.

I can’t make a donation to charity!

If you are not able to donate money to any charity, for whatever reason, I would appreciate it if you could let me know why. Understanding what the problem with making a donation is will enable me to improve the KiXtart CareWare process.
I don’t care…

That is entirely your prerogative. The KiXtart CareWare initiative is based on your voluntary cooperation. KiXtart has no built-in registration process or license checks.

Please carefully consider the value of KiXtart to you and your organization, and reconsider making a donation. Your support will be greatly appreciated, by me, and more importantly, by the organizations you donate to and the people they support. Join the growing number of KiXtart CareWare supporters today!
CareWare works!

Over the years, many of you have supported the KiXtart CareWare initiative and have donated to various organizations worldwide. In particular, your support has enabled Room-to-Read to build a school in Nepal exclusively funded by donations of KiXtart users! Additionally, Room-to-Read has used your support to create much needed children’s reading books in the Nepali language. Please see Room-to-Read Local Language Publications for more information on these exciting real world results.

CareWare actually works; if you already support the initiative, please accept my sincerest thanks for your support. If you haven’t made a donation yet, please take a few moments and start supporting the KiXtart CareWare initiative today!

[image: image6.jpg]

[image: image7.jpg]

System Requirements

KiXtart 2010 is supported on systems with an Intel 80486 or better microprocessor systems running Windows Server 2003, Windows XP, Windows 2000, Windows NT 3.x/4.x, or any version of Windows 95, Windows 98 or Windows Millennium (referred to in this document as Windows 9x).

KiXtart is also available for the MS-DOS platform. Please check the following Web locations for the latest versions available:

http://kixtart.org
http://www.scriptlogic.com/kixtart
http://kixhelp.com
KiXtart 2010 Files

The KiXtart 2010 zipfile contains the following files.

	Kix2010.doc
	This document

	Kix32.exe
	KiXtart 2010 program file (Console version)

	WKix32.exe
	KiXtart 2010 program file (Console-less version)

	Kxrpc.exe
	KiXtart RPC service for Windows 9x clients

	Kx95.dll
	Dynamic link library (DLL) for KiXtart on Windows 9x

	Kx16.dll, Kx32.dll
	Support DLLs to connect to Netapi.dll on Windows 9x

	*.kix
	Sample script files

	*.spk
	Sample SPK files

	Chimes.wav
	Sample WAV file

	Kix2010.txt
	Release notes, containing information about the latest changes to KiXtart 2010

Installing KiXtart

KiXtart consists of five executable components:

(
Kix32.exe (or Wkix32.exe), the main program file

(
Kx16.dll, a 16-bit DLL used to connect to Netapi.dll on Windows 9x clients

(
Kx32.dll, a 32-bit DLL used to connect to Netapi.dll on Windows 9x clients

(
Kxrpc.exe, a Windows NT service to support Windows 9x clients

(
Kx95.dll, a 32-bit dynamic link library (DLL) used by Windows 9x clients to connect to the KiXtart RPC service

All executable components can be installed on and run from the network or from the local hard disk of the client systems.

To install KiXtart on the network

To install KiXtart on the network, copy the required files to the NETLOGON share of the logonserver(s).

To install KiXtart on a client

To install KiXtart on a client, copy the required files to a directory on the local hard disk. Optionally, the dynamic link libraries (DLLs) can be copied to the windows or the windows\system directory.

Required files for Windows NT/2000/XP Clients

Windows NT or higher clients need only install Kix32.exe.

Required files for Windows 9x Clients

Windows 9x clients must install both Kix32.exe and two dynamic-link libraries (DLLs) called KX16.DLL and KX32.DLL.

If Windows 9x clients are to communicate with the KiXtart RPC service, an additional DLL, called KX95.DLL, should also be installed. Please see the separate paragraph on the KiXtart RPC service for full details.

Note

KX95.DLL should only be installed if the KiXtart RPC service will be used. Without the KiXtart RPC service, KX95.DLL will generate unnecessary network traffic and delay the start of KiXtart.

Uninstalling KiXtart

To uninstall KiXtart, simply delete the executable components and scripts.

The KiXtart RPC service can be removed at the command prompt by typing the following command:
KXRPC –remove

Updating from previous versions

To update KiXtart for Windows NT or higher clients, replace KIX32.EXE.

To update KiXtart for Windows 9x clients, make sure to replace all components: KIX32.EXE, KX32.DLL and KX16.DLL. If the KiXtart RPC service is used, make sure to also replace KX95.DLL and KXRPC.EXE.

Note

Failing to replace all the components can cause unexpected behavior. As a precaution, KiXtart checks for the correct components and will report an error in KIXTART.LOG if it finds an outdated component.
To update the KiXtart RPC service, stop the service (NET STOP KXRPC), replace KXRPC.EXE and restart the service.
Running KiXtart

KiXtart can be run manually or automatically during the logon sequence.

To run KiXtart manually

(
At the command prompt, type the following command:

kix32

By default, KiXtart automatically looks for a personal script for the current user ("Username.KIX"). If it does not find one, it looks for the default script, "KIXTART.KIX". You can override this behavior by specifying one or more scripts after Kix32.exe on the commandline.

Note

The global state of KiXtart is maintained as long as the KiXtart process runs. This means that if you specify multiple scripts on the commandline, any global variables and user-defined functions you have defined in a script will also be available to any subsequent scripts.
Default extensions

If you do not include an extension with a scriptname, KiXtart attempts to use two default extensions: “.KX” and ".KIX". Note that KiXtart 2010 no longer uses the ".SCR" extension.

KiXtart also supports declaring variables at the command prompt, as demonstrated in the following example:

kix32 Demo.kix $Key=HKEY_LOCAL_MACHINE\Software
For information about valid variable names and values, see "Dynamic Program Variables" later in this document.

KiXtart supports the following commandline switches:

	-d
	Enables debug mode.

	-f[:yyyy/mm/dd]
	Refreshes the group-membership cache.

	-i
	Invisible mode. Prevents KiXtart from displaying a console window.

Note: only available in the Windows version of KiXtart.

	-r:"eril"
	RPC search order. Determines the order in which KiXtart attempts to locate a KXRPC server. See the description of the KXRPC service for full details.

	-t
	Tokenizing mode. This will cause KiXtart to pre-tokenize the script(s) instead of running them.

See the paragraph on pre-tokenizing for more details.

	-u
	(Un-)lock password. This option enables you to specify a password to encrypt or decrypt a pre-tokenized script. The password can have any length.
See the paragraph on pre-tokenizing for more details.

	-?
	Display KiXtart command line usage.

To run Kix32.exe automatically when a user logs on

On Windows 2000/XP:

1.
Open Users and Computers and select the user.

2.
Right-Click, select Properties, and then select the Profile tab.

3.
In the Logon Script box, type "Kix32".

On Windows NT:

1.
In User Manager, select the user.

2.
On the File menu, click Properties, and then click Profile.

3.
In the Logon Script Name box, type "Kix32".

Note

For Windows 9x clients, do not specify a KiXtart script in the Logon Script Name box in the User Environment Profile dialog box in User Manager. To specify a script for Windows 9x clients, use a batch file as the logon script, and start KiXtart from the batch file.

Running KiXtart from a Batch File

Kix32.exe can be run from a batch file that is used as the logon script for the user. For example, if Kix32.exe is in the root directory of the NETLOGON share, the batch file might contain the following commands:

@ECHO OFF

%0\..\Kix32.exe

Note

Use of the syntax %0\..\ is discussed in Knowledge Base article Q121387.

If Kix32.exe was installed on the client's local hard disk, you must refer to the local directory, for example: C:\Kixtart\Kix32.exe.

On computers running Windows 9x, KiXtart can also be started by using Lmscript emulation. For more information, see "Running KiXtart with Lmscript Emulation" later in this document.
Pre-tokenizing scripts

KiXtart 2010 provides an option to pre-tokenize scripts. This feature takes a regular, clear text script, converts it to so-called ‘tokens’ and stores the result as a new file. Tokenized scripts are smaller and can be processed faster than clear text scripts. Additionally, tokenized scripts are encrypted and contain a signature to protect against accidental changes in the script. These features provide a level of security unavailable with clear text scripts.
Note

The level of security provided by tokenizing a script qualifies as ‘obsfucation’. In practical terms this means that tokenized scripts are perfectly safe from attempts at viewing or changing them by regular end users. However, tokenized scripts are not safe from attacks by people with enough time and determination on their side. As a rule, you should never store any valuable or sensitive data, such as administrative passwords, in scripts (including tokenized scripts).

Additional protection of scripts can be achieved by using the password-protection option. Scripts that have been protected with a password can only be used by specifying the correct password on the KiXtart commandline.
To pre-tokenize a script, simply specify the ‘/t’ option on the commandline:
KIX32 demo.kix /t

To pre-tokenize a script and protect it with a password, combine the ‘/t’ option with the ‘/u’ option on the commandline:
KIX32 demo.kix /t /u=YourSecretPassword
Tokenized scripts are stored using the original filename appended with the “.kx” extension. The example above would produce a file with the name “demo.kx”.
Using the INCLUDE statement you can combine multiple scripts into a single pre-tokenized script.
Tokenized scripts can be run from the KiXtart commandline as well as by using the CALL command. Note however, that CALL cannot be used to run tokenized files have been protected with a password.
Note

KiXtart does not provide a way to convert pre-tokenized scripts back into clear text scripts. If you use the pre-tokenizing feature, always make sure to maintain copies of the original source scripts.

Locating Files

During the logon sequence, KiXtart automatically tries to locate all files that it is asked to open (SPK, WAV, TXT, and so on) by searching for them first on the NETLOGON drive, then on the drive where KiXtart was started from, and finally in the current directory. This behavior can be overridden by prepending the filename with a drive letter or a UNC path.

For example, the following command:

play file "Jbond.spk"

causes KiXtart to search for Jbond.spk on the NETLOGON share, in the KiXtart startup directory, and in the current directory.

If this command is used:

play file "C:Jbond.spk"

KiXtart searches for Jbond.spk only in the current directory of the C drive.

Note that functions built on native Windows API’s such as ReadProfileString and WriteProfileString use a different algorithm for locating files, and will search the directory into which Windows was installed if no searchpath was specified.

Troubleshooting KiXtart

Introduction

KiXtart provides extensive logging of system errors, such as failure to locate support DLLs, failure to connect to the RPC service, and so on. On computers running Windows NT, these errors are logged in the system event log. On computers running Windows 9x, the errors are logged in a text file named Kixtart.log, which is stored in the Temp or Windows directory.

Note

KiXtart supports the new automatic DrWatson functionality of Windows XP. If you encounter an exception error with KiXtart, and the DrWatson dialog is displayed, please do select the ‘Send Report’ option. Doing so will greatly help with the research and resolution of any issues in KiXtart.

Common issues
The following table describes the most common problems encountered by KiXtart.

	Error
	Meaning
	Solution

	

	The macro @ADDRESS returns an empty string ("").
	KiXtart failed to find a NetBIOS interface on any of the network bindings.
	Make sure a NetBIOS interface is available on one of the bindings.

	The macro @FULLNAME returns an empty string ("").
	KiXtart cannot retrieve the network information.
	On Windows NT, make sure the Workstation service is running.

On Windows 9x, make sure that the support DLLs are available.

Also check the event log or kixtart.log for any errors.

	KiXtart does not recognize certain commands.
	Although KiXtart is a free-format language, some literals, such server names that contain a hyphen (-), can cause errors.
	Enclose literals in quotation marks.

	Errors such as "Label not found" or "Unknown command" appear in an otherwise faultless script.
	There is probably an unmatched quotation mark or similar error somewhere in the script.
	Proofread your script.

	Failed to initialize RASMAN.DLL.
	Caused by a ‘half-installation’ of the RAS client software. Installation either wasn’t completed, or the uninstallation left RASAPI32.DLL on the system.
	Remove RASAPI32.DLL from the system, or complete the installation of the RAS client.

	Application error c0000006H / ‘IN_PAGE_ERROR’ / ‘SWAP_ERROR’ or an Invalid Page Fault is generated intermittently.
	The operating system has failed to read code from executable file(s) because the KiXtart startup drive has become unavailable.
	Make sure that you do not, in any way, disconnect or re-redirect the drive from which KIX32.EXE was started. Also, these faults can be caused by antivirus software. If you use antivirus software, make sure you are using the latest version and if the problem persists, test if disabling the antivirus software solves the problem.

Lastly, if you are using the Windows version of KiXtart (WKIX32.EXE) in a batchfile, please make sure to run it using the START command with the /W and /B options.

Tip

To include quotation marks in a string, either use the CHR function, or enclose the entire string in quotation marks. For example,

"String with a quote (‘) in it."

or:

"String with a double quote " + Chr(34) + " in it."

Debug mode

KiXtart provides a basic debug facility. In debug mode, a script can be executed statement by statement, the value of variables or macros can be displayed, and you can execute arbitrary script commands. To run a script in debug mode, specify ‘/d’ on the command line. Alternatively, you can enter and leave debug mode anywhere in a script using the DEBUG ON and DEBUG OFF commands.
Note: debug mode can be completely disabled from within a script using SetOption("DisableDebugging", "On").

In debug mode, the top line of the screen is used to display the current line in the script starting at the current statement. Optionally, the second line of the screen is used to display the value of a specific variable or macro.

In debug mode, the following keys are available to control script execution:

F5
Run (deactivates debug mode, runs rest of script to the end or until a DEBUG ON command is encountered).
F8, <Space>, <Enter>
Step into (run a single statement, follow thread into subroutines, UDF’s, and secondary scripts).
F10
Step over (run a single statement, executes, but skips over subroutines, UDF’s, and secondary scripts as far as the debugger is concerned).
\ (Backslash)
Enables you to query the value of a variable, array element or macro simply by typing the name and pressing <Enter>. Similarly, you can execute an arbitrary piece of KiXtart code simply by typing it in and pressing <Enter>.

<Esc>, ‘q’
Exit KiXtart.
Miscellaneous…

KiXtart and the console

KiXtart is provided in two ‘flavors’: the standard console-based version and a Windows version. The Windows version will only display a console if and when any output is sent to the screen. If desired, this behavior can be overridden using the /I (Invisible) commandline option.

Note

By default, the Windows version of KiXtart runs as an asynchronous process. This means that if you start WKIX32.EXE from a batchfile, the batchfile will not wait for KiXtart to exit and will continue processing. This behavior can cause problems if KiXtart is being used as part of the logon process, especially on Windows 9x clients. To prevent these problems, WKIX32.EXE should be started from a batchfile using the START command with the wait option, e.g.: "START /W WKIX32.EXE". Optionally, on Windows NT or higher, you can also specify the /B option with the START command, to prevent the creation of an additional window.

The console version behaves exactly like KiXtart 95, and will automatically cause a console window to be created upon startup.

COM automation in KiXtart 2010
COM Automation is a way for applications (such as Word and Excel) to expose functionality to other applications, including scripting languages such as KiXtart. This provides an easy way to access properties and call methods of other applications from within a script.

Note: the new COM automation support in KiXtart 2010 replaces the OLE functions in previous versions of KiXtart.

Creating a Reference to a COM Object
A reference to a COM object can be created by assigning the return value of the CreateObject or GetObject function to a variable:
$Object = CreateObject("WScript.Shell")

$ExcelSheet = CreateObject("Excel.Sheet")

$Root = GetObject("LDAP://RootDse")

Releasing an Object

Object references are automatically released if and when a variable becomes out of scope. To explicitly release an object reference, simply assign the value 0 (zero) to the variable holding the object handle:

$Object = 0

Using an Object's Properties and Methods

You can use the object.property syntax to set and return an object's property values or the object.method syntax to use methods on the object. For example, you could set the Caption property of the Application object as follows:

$xlApp = CreateObject("Excel.Application")

$xlApp.Caption = "MyFirstObject"

You could call the Quit method of the Microsoft Excel Application object like this:

$xlApp.Quit

In general, it is a good idea to be as specific as possible when referring to methods or properties of objects defined by other applications or projects.

Default Properties

Some objects support a default property or method. KiXtart provides limited support for reading of default properties within string or numeric expressions. Default properties are not supported when assigning an object reference to a variable. KiXtart also does not support setting the value of default properties.
Sample 1: accessing a default property in an expression:

$XL = CreateObject("EXCEL.Application")

? SubStr($XL,1,10)

; will display ‘Microsoft’

Sample 2: assigning an object reference to a variable:

$XL = CreateObject("EXCEL.Application")

$AnotherReference = $XL

; Assigns reference to $XL

Note

Use of default properties is discouraged as it makes scripts harder to read and error-prone.

COM Automation Samples

The following three sample scripts demonstrate just a few of the ways in which COM automation can be used in KiXtart scripts. Please consult the Microsoft Developer Network (MSDN) for more information on the many possibilities of COM automation.

Sample 1: script using COM automation and Active Directory Services Interface (ADSI) to retrieve various global properties of an LDAP server:

$root = GetObject("LDAP://RootDSE")

$root.GetInfo

? "ADSPath: " + $root.ADSPath

? "GUID : " + $root.GUID

? "Name : " + $root.Name

? "Parent : " + $root.Parent

? "DNC : " + $root.defaultNamingContext
Sample 2: script using COM automation and Windows Management Instrumentation (WMI) to enumerate the logical disks of the local system:

$Drives = GetObject("winmgmts:").ExecQuery("select Name,DriveType from Win32_LogicalDisk")

if @error <> 0

 ? @error + " / " @serror

else

 for each $Drive in $Drives

 ? $Drive.Name

 next

endif

Sample 3: script demonstrating how to start Excel and add data to a worksheet:

$oXL = CreateObject("EXCEL.application")

if @error = 0

 $oXL.Visible = 1
; make Excel visible to the user

 $Rc = $oXL.Workbooks.Add
; add a new workbook

 $array = "Order #", "Amount", "Tax"

 $oXL.Range("A1:C1").Value = $array
;add some columns

 For $i = 0 To 19

 $oXL.Cells(($i+2),1).Value = "ORD" + ($i + 1000)

 $oXL.Cells(($i+2),2).Value = rnd() / 100

 Next

 ;Fill the last column with a formula to compute the sales tax.

 $oXL.Range("C2").Resize(20, 1).Formula = "=B2*0.07"

 ;Format the worksheet

 $oXL.Range("A1:C1").Font.Bold = 1

 $Rc = $oXL.Range("A1:C1").EntireColumn.AutoFit

 $oXL.UserControl = 1

else

 ? @error + " / " @serror

endif
Group-membership information.

Introduction.

KiXtart provides functions to test or enumerate the group-membership of the current user (specifically: InGroup() and EnumGroup()). These functions operate on an in-memory list of groups the user is a member of. This list is filled once during every KiXtart session (in other words: once every time you run KIX32.EXE).
Previous versions of KiXtart always queried the logonserver for the group-membership information. This provided information on both local and global groups in the logondomain. KiXtart retrieves group-membership information using the security token of the current user. The benefit of the new method is that KiXtart can now support universal groups as well as nested global groups.
Note

Because a security token is created during the logon of a user and does not change while that user is logged on, changes to the user’s group-membership are not visible to KiXtart until the next time the user logs on.

Group-membership information cache.

As both methods of retrieving the group-membership are relatively costly in terms of network traffic and process time the latest update of KiXtart caches the group-membership information in the registry. This means that once the cache is filled, subsequent runs of KIX32.EXE will require much less time to retrieve the group-membership information.

The group-membership cache is stored in the registry hive of the current user and contains security-identifier-to-groupname mappings. Changes to a user's group-membership are automatically handled by KiXtart during the next logon.

Note

If an existing group is renamed, that change will not be visible to KiXtart until the next time the token-cache is refreshed.

The cache is automatically refreshed every 30 days.

A refresh of the cache can also be forced using the new '/f' commandline option:

KIX32 <yourscript> /f

Optionally, you can include a date, indicating how old the cache must be for it to be refreshed:

KIX32 <yourscript> /f:2001/12/31

Note

The group-membership cache feature of KiXtart is only available on Windows NT or higher.

General Syntax Rules

KiXtart is a free-format scripting language. The language is case-insensitive. This means that

IF @PRIV="ADMIN" DISPLAY "ADMIN.TXT" ELSE DISPLAY "USER.TXT" ENDIF

is equivalent to

If @PRIV = "ADMIN"

 Display "ADMIN.TXT"

Else

 Display "USER.TXT"

Endif
When using KiXtart, note the following rules:

(
Strings can contain any characters, except the \0 (NULL) and \x1a (end of file) characters.

(
Script commands should be separated by white space — that is, any combination of spaces, tabs, or new line characters.

(
Strings must be enclosed in quotation marks. For example:
'String with a dash (-) in it.'
; String with a dash (-) in it.

Block Commenting

A "comment" is a sequence of characters beginning with a forward slash/asterisk combination (/*) that is treated as a single white-space character by KiXtart and is otherwise ignored. A comment can include any combination of characters from the representable character set, including newline characters, but excluding the "end comment" delimiter (*/).Comments can occupy more than one line but cannot be nested. Comments can appear anywhere a white-space character is allowed. The compiler ignores the characters in the comment.

Use comments to document your code. This example is a comment accepted by the compiler:

/* Comments can contain keywords such as

 for and while without generating errors. */

Comments can appear on the same line as a code statement:

? "Hello" /* Comments can go here */

Dynamic Program Variables

Introduction

In KiXtart, variables are used to temporarily store values during the execution of a script. Variables have a name (the word you use to refer to the value the variable contains) a type (which determines the kind of data the variable can store) and a scope (which determines where in the script you can reference the variable). You can think of a variable as a placeholder in memory for an unknown value.

Storing data in variables

Variables can be assigned a particular value by using an assignment statement:

$Variable = 10

or by using a GET or GETS statement :

GET $Variable

Optionally, variables can be created and assigned a value on the commandline with which KiXtart is started. To do this, type the variable name followed by an equal sign (=) and the value the variable should have. For example:

KIX32 Demo.kix $Key=Value

Note

On the commandline, do not include spaces between the equal sign (=) and the value. If you want to specify a value that contains spaces, enclose it in quotation marks (for example, KIX32 Demo.kix $Key="Hi there").

Declaring Variables

To declare a variable is to tell the program about it in advance. You declare a variable with the Dim or the Global statement, supplying a name for the variable:

DIM variablename

Variables declared with the Dim statement exist only as long as the script segment in which the Dim statement was used is executing. When the script segment completes, the variable, and its value, disappear. Variables declared with the Global statement exist during the entire KiXtart session.

A variable name:

· Can't contain operator characters (+,-,*,/,&,<,>,=)

· Can’t contain a period

· Must be unique within the same scope, which is the range from which the variable can be referenced in a script, or script segment.

Note

You can use the same name for variables in different scopes, and if you do, you will only be able to reference the variable in the current scope. Please see the example below for more details:

$Var = 10

IF InGroup("Admins")

 DIM $Var
; local variable with same name

 $Var = 20

 ? $Var
; this will display ‘20’

ENDIF

? $Var
; this will display ‘10’
Implicit declaration

By default, variables do not have to be declared before they can be used. You can implicitly declare them simply by assigning a value to them. Note that all variables that are declared in this way have a global scope (see below for details on scope).

Optionally, implicit declaration can be disabled using the Explicit option (see the SetOption for details). If implicit declaration is disabled, all variables must be explicitly declared before they can be used.
Scope of variables

Depending on how and where they are declared, variables can have a local or a global scope. Variables with a global scope are visible anywhere in any script during the entire KiXtart session. Variables with a local scope are only visible to the script or script segment in which they were created.

Examples:

	$GlobalVariable = 10
	Assuming this is the first reference to ‘$GlobalVariable’, this variable is implicitly declared and will become a global variable, visible everywhere in every script during this KiXtart session.

	DIM $LocalVariable

$LocalVariable = 10

	This variable will become a local variable and will be visible only in the current script.

	IF $X = 1

 DIM $LocalVariable

 $LocalVariable = 10

ENDIF

	In this example, $LocalVariable will only be visible inside the IF statement.

	GOSUB Demo

EXIT 1

:Demo

DIM $LocalVariable

$LocalVariable = 10

RETURN

	In this example, $LocalVariable will only be visible inside the subroutine ‘Demo’.

Variable types

In KiXtart, variables are always of one fundamental data type: Variant. The current implementation of KiXtart uses three types of variants: long integers, doubles (8-byte floating point numbers) and strings. A variant of type string can contain up to 32,000 characters. Integer variables can contain any value between ‑2,147,483,648 and 2,147,483,647. The type of a variable is automatically changed to the result of the expression that is assigned to it. This means that if you assign a string to a variable containing an integer, the type of the variable is changed to a string.

There is no limit to the number of variables that can be defined, other than the amount of memory available to KiXtart.

Note that KiXtart can handle other types of variants, such as Booleans, Bytes, etc. KiXtart itself does not create these types, but they may be returned by other programs via COM automation. If any of these types of variants is used in an expression, it will be converted to the appropriate type before the expression is evaluated.

Arrays

KiXtart supports arrays with up to 60 dimensions. Arrays allow you to refer to a series of variables by the same name and to use a number (an index) to tell them apart. This helps you create smaller and simpler code in many situations, because you can set up loops that deal efficiently with any number of cases by using the index number. Arrays have both upper and lower bounds, and the elements of the array are contiguous within those bounds. Because KiXtart allocates space for each index number, avoid declaring an array larger than necessary.

When declaring an array, follow the array name by the upper bound in square brackets. The upper bound cannot exceed 2,147,483,647.

Arrays can be declared with zero elements:

Examples:

Dim $Counters[14]
; explicit declaration

Dim $Sums[20,3]

; explicit declaration

$NewArray = 10,20,30
; implicit declaration

$Array = "A1","B2","C3"
; implicit declaration

Dim $MyArray[]

The first declaration creates an array with 15 elements, with index numbers running from 0 to 14. The second creates a two dimensional array of 21 by 4 elements. The third and fourth declarations create arrays with 3 elements, with index numbers running from 0 to 2. The fifth declaration creates an array with zero elements.
Arrays always have type variant.

Note

Unlike regular variables, arrays can not be used inside strings and can not be assigned a value on the commandline.

Expressions

KiXtart supports three types of expressions: string, integer and double.

A string expression can consist of any combination of the following:

(
Literals (a sequence of characters enclosed in quotation marks)

(
Functions that return a string

(
Object references

(
Plus signs (+), which indicate concatenated sub-expressions

Integer and double expressions can consist of any combination of:

(
Sub-expressions

(
Numeric values (in decimal, hexadecimal or floating point notation, see below for details)

(
Functions that return a numeric value

(
Object references

(Numeric operators (+, – , *, /, mod, &, |)

Decimal notation:

[-|+]<digits>

Hexadecimal notation:

[-|+]<&digits>

Floating point notation:

[-|+]<digits.>[digits][e<exponent>]

KiXtart support the following numeric operators:

	+
	Used to sum two numbers.

	-
	Used to find the difference between two numbers or to indicate the negative value of a numeric expression.

	*
	Used to multiply two numbers.

	/
	Used to divide two numbers and return an integer result.

	mod
	Used to divide two numbers and return only the remainder.

	&
	Performs a bitwise mathematical AND operation on two numbers.

	|
	Performs a bitwise mathematical OR operation on two numbers.

	^
	Performs a bitwise mathematical XOR operation on two numbers.

	~
	Performs a bitwise mathematical negation operation on a number.

To specify a number in hexadecimal notation, prepend it with an ampersand (‘&’).

Both string and numeric expressions can contain the following conditional and logical operators:

(
<
less than
(
>
greater than
(
=
equal (case insensitive)
(
<>
not equal
(
<=
less than or equal
(
>=
greater than or equal

(
==
equal (case sensitive)
(
Not
(
And
(
Or

A string expression can contain up to 32,000 characters. Any macros, or references to environment strings within a string (e.g.: "String with the macro @USERID in it.") are resolved before the string is evaluated.
By default, references to variables inside strings (e.g.: "String with a $Var in it.") are also resolved before the string is displayed. The only exceptions to this rule are arrays and object references, which can not be used inside strings. To use arrays or object references in combination with strings, you have to use concatenation. Note that you can disable resolving of variables or macros inside strings by using the NoVarsInStrings or NoMacrosInStrings options (see SetOption for full details).
Note

The characters @, %, or $ are normally used to indicate macros, environment strings, or variables. If you want to use these characters in a string, use @@, %%, or $$.

The following examples show the correct use of expressions in KiXtart:

$X = 1 + "20"

; $X type = integer / value = 21.

$X = &10 + &A

; $X type = integer / value = &1A (26).

$X = "1" + "20"

; $X type = string / value = '120'.

$X = @USERID + "1"

; $X type = string / value = 'USER1'.

"Current time = " + @time
; prints: "Current time = 12:34:00"

"Use @@time to print the time"
; prints: "Use @time to print the time "

$Y = "And this is how you access environment variables: %USERNAME%..."

IF @Day='Sunday' AND @USERID = 'RuudV'

$X = (@MONTHNO=3 AND @MDAYNO>=20) OR @MONTHNO=4

IF @WKSTA="VLEERBEER" OR @WKSTA="PALOMINE"

$X = ((@YDAYNO + 7) / 7) + 1

; Old style use of variables inside a string:

"Use of a variable $Var inside a string."

New, preferred style to use variables in combination with strings:

"Use of a variable " + $Var + " inside a string."

Strings in the script are displayed on the screen in the current character size starting from the current cursor position. For information about character size, see the BIG and SMALL commands.

A string can be enclosed in single or double quotation marks. To specify quotation marks in a string, either use the CHR function or enclose the entire string in the opposite type of quotation marks — .that is, if you want to include single quotation marks in a string, enclose the string in double quotation marks, and vice versa.

The following examples show the correct use of string expressions in KiXtart:

	Code
	Output

	"Hi "+ @userid

	Hi Ruudv

	'Double quote in a string: (")’

	Double quote in a string: (")

	"Single quote in a string: (')"

	Single quote in a string: (')

	"More double quote: " + Chr(34)

	More double quote: "

KiXtart determines the type of the expression from the first element of the expression.

Operator precedence

When several operations occur in an expression, KiXtart evaluates and resolves each part of the expression in a predetermined order. This predetermined order is known as operator precedence.

Parentheses can be used to override the order of precedence and force some parts of an expression to be evaluated before other parts. Operations within parentheses are always performed before those outside the parentheses. Within parentheses standard operator precedence is maintained.

The precedence of operators affects the grouping and evaluation of operands in expressions. Expressions with higher-precedence operators are evaluated first.

The following table summarizes the precedence of the supported operators, listing them in order of precedence from highest to lowest. Where several operators appear together, they have equal precedence and are evaluated from left to right.

	Operator
	Type of operation

	[] () .
	Expression

	+ - ~ NOT
	Unary

	* / mod
	Multiplicative

	+ - ^
	Addition

	< > <= >=
	Relational

	= ==
	Equality

	AND OR
	Logical AND, logical OR

KiXtart Command Reference

KiXtart accepts the commands described in the following sections.

Note

In this documentation, square brackets ([]) indicate optional arguments, and angle brackets (< >) indicate required arguments.

:

Action

Defines a label within the script file to which you can transfer control.

Syntax

:label
Remarks

Labels must be unique within a script or user defined function and cannot contain whitespace characters. Labels can be defined inside script segments (for example inside a WHILE – LOOP segment), but you cannot jump to such a label from outside the segment.
Also, labels in INCLUDE files are only allowed inside user-defined functions.
;

Action

Indicates a comment. Subsequent characters on the script line are ignored.

Syntax

;

See also
Block Commenting.

?

Action

Indicates a new line. This moves the cursor position to the beginning of the next line.

Syntax

?
BEEP

Action

Plays the default sound.

Syntax

BEEP
BIG

Action

Changes the character mode to large characters.

Syntax

BIG

Remarks

When BIG is used, subsequent screen output is 8 characters wide and 8 characters high. Use SMALL to reset the character mode to normal.

BIG is ignored when screen output is redirected to a file.

BREAK

Action

Enables (BREAK ON) or disables (BREAK OFF) the ctrl+c/break keys and the Close command. This effectively allows control over whether a script run by KiXtart can be interrupted or not.

Syntax

BREAK <ON | OFF>

Remarks

By default, to prevent users from inadvertently interrupting a script, KiXtart automatically disables the ctrl+c/break keys, removes the Close command in the System menu of the current command-prompt window, and hides the Please wait while your logon script executes message box on Windows 9x.

In a multi-tasking environment such as Windows NT, users cannot be fully prevented from interrupting a program. (Programs can be stopped by using the Task List, for example.) As an additional protection, on computers running Windows NT Workstation only, when BREAK is OFF (the default) KiXtart also installs a special event handler for the current console. The effect of this handler is that whenever a user forcibly terminates KiXtart, the user is automatically logged off. This also means that you must be careful when testing scripts.

CALL

Action

Runs a separate KiXtart script.

Syntax

CALL "script name"

Remarks

When the called script ends or when a RETURN statement is encountered, script execution continues at the statement following the CALL statement in the calling script.

Theoretically, there is no limit to the number of scripts that can be nested. Obviously, the practical limit on the number of scripts you can call is determined by the amount of available memory at the time KiXtart runs, the size of the scripts, the number of variables defined, and so on.
Note that CALL cannot be used to run tokenized files have been protected with a password.
CD

Action

Changes the current working directory to the directory specified.

Syntax

CD "directory"

Remarks

Check the value of @ERROR to see if CD was successful.

CLS

Action

Clears the screen and moves the cursor to position 0,0.

Syntax

CLS

Remarks

The CLS command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.

COLOR

Action

Sets the color attribute to be used in subsequent display statements.

Syntax

COLOR Xx/Yy

Parameters

	X
	Foreground color

	x
	Optional intensity indication

	Y
	Background color

	y
	Optional blink indication

Colour codes:

	Character
	Low intensity
	
	High intensity
	

	N
	Black
	
	Dark grey
	

	B
	Dark blue
	
	Light blue
	

	G
	Dark green
	
	Light green
	

	C
	Dark cyan
	
	Light cyan
	

	R
	Dark red
	
	Light red
	

	M
	Magenta
	
	Pink
	

	Y
	Brown
	
	Yellow
	

	W
	Light grey
	
	White
	

Remarks

If the foreground color is followed by a plus sign (+), the color is displayed with high intensity.

Specifying a plus sign (+) with the background color causes the color to be displayed blinking.

Examples

	COLOR w+/b
	Bright white text on a blue background

	COLOR g/r
	Green text on a red background

	$ForeGround = "y+"

$BackGround = "n"

COLOR $ForeGround/$BackGround
	Bright yellow text on a black background

	$NewColor = "b+/g"

COLOR $NewColor
	Bright blue text on a green background

COOKIE1

Action

Creates a cookie, or semaphore-file, that the Windows 9x Logon API uses to determine whether the script has finished running. This command is only useful when KiXtart is being used to emulate Lmscript.exe. For more information, see "Lmscript Emulation," earlier in this document.

Syntax

COOKIE1
COPY

Action

Copies one or more files or directories.
Syntax

COPY "source" "destination" [/h] [/s]
If the source or destination specifies a directory, please make sure to add a trailing backslash.

	/c
	Continue operation, even if errors occur.

	/h
	Copies hidden and system files also.

	/r
	Overwrite read-only files.

	/s
	Copies directories and subdirectories, including empty ones.

Remarks

Wildcards are supported.

If a file already exists at the destination, it is overwritten without warning.
Examples

; The following examples copy all files in MyDir to NewDir

COPY "S:\MyDir*.*" "S:\NewDir*.*"

COPY "S:\MyDir\." "S:\NewDir\."

COPY "S:\MyDir\" "S:\NewDir\"

; If the target (directory) does not exist, and the target specification ; does not have a trailing backslash, COPY will fail with

; errorcode 3 ("path not found")
COPY "S:\MyDir\" "S:\NewDir"

; fails if NewDir does not exist
; This command will copy all files that match the wildcard specification

; and change their extension to '.bak'

COPY "MyDir\file*.txt" "MyDir\file*.bak"

DEBUG

Action

Activates or de-activates debug mode at runtime.

In debug mode, the top line of the screen is used to display the current line in the script starting at the current statement. Optionally, the second line of the screen is used to display the value of a specific variable or macro.

The following keys are available to control script execution in debug mode:

	Key
	Action/description

	F5
	Run (deactivates debug mode, runs rest of script to the end or until a DEBUG ON command is encountered).

	F8, <Space>, <Enter>
	Step into (run a single statement, follow thread into subroutines, UDF’s, and secondary scripts).

	F10
	Step over (run a single statement, executes, but skips over subroutines, UDF’s, and secondary scripts as far as the debugger is concerned).

	‘\’ (Backslash)
	Enables you to query the value of a variable, array element or macro simply by typing the name and pressing <Enter>. Similarly, you can execute an arbitrary piece of KiXtart code simply by typing it in and pressing <Enter>.

	<Escape>, ‘Q’
	Terminate script execution and exit KiXtart.

Syntax

DEBUG "ON" | "OFF"
Remarks

DEBUG ON is ignored if debug mode has been disabled using SetOption("DisableDebugging", "On").

DEL

Action

Deletes a file.

Syntax

DEL "file name" [/h] [/s]

	/c
	Continue operation, even if errors occur.

	/f
	Overwrite read-only files.

	/h
	Deletes hidden and system files also.

	/s
	Delete specified files from all subdirectories.

Remarks

DEL does not prompt the user to confirm the deletion.

Wildcards are supported.

DIM

Action

Declare one or more local variables.

Syntax

DIM "variable1" [<,>"variablex"]

Remarks

Local variables are visible only in the current script or script segment.

Examples

DIM $Variable

DIM $Array[9]
; Note : declaration of an array of 10 elements.

IF $X = 1

 DIM $Var1, $Var2, $Var3

ENDIF

DISPLAY

Action

Displays the contents of a file on the screen, starting at the current cursor position.

Syntax

DISPLAY "file name"

DO UNTIL

Action

Loops until an expression becomes true.

Syntax

DO

statements...

UNTIL "expression"

Remarks

DO UNTIL loops can be nested as many times as memory allows.

EXIT

Action

Exits the current KiXtart script, or, if used at the topmost level, exits KiXtart. Exit can also be used to leave a UDF.
Syntax

EXIT [error level / exit code]

Remarks

If EXIT is followed by a numeric expression, then @ERROR is set to the value of that expression and you can check it in the calling script or batchfile.

FLUSHKB

Action

Flushes all pending characters from the keyboard buffer.

Syntax

FLUSHKB
FOR EACH

Action

Repeats a group of statements for each element in an array or collection.

Syntax

FOR EACH $element IN group

statements…

NEXT

FOR EACH loops can be nested as many times as memory allows.

Parameters

Element
Variable used to iterate through the elements of the collection or array..

Group
Name of an object collection or array.

Remarks

The For Each block is entered if there is at least one element in group. Once the loop has been entered, all the statements in the loop are executed for the first element in group. As long as there are more elements in group, the statements in the loop continue to execute for each element. When there are no more elements in group, the loop is exited and execution continues with the statement following the Next statement.

Examples

Dim $MyArray[10]

For Each $Element In $MyArray

 ? $Element

Next

$Root = GetObject("LDAP://localhost")

For Each $Obj in $Root

 ? $Obj.name

Next

FOR NEXT

Action

Repeats a group of statements a specified number of times.

Syntax

FOR $counter = start TO end [STEP step]

statements…

NEXT

FOR NEXT loops can be nested as many times as memory allows.

Parameters

Counter
Numeric variable used as a loop counter.

Start
Initial value of $counter.

End
Final value of $counter.

Step
Amount counter is changed each time through the loop. If not specified, step defaults to one. The step argument can be either positive or negative. The value of the step argument determines loop processing as follows:

Value
Loop executes if

Positive or 0
$counter <= end

Negative
$counter >= end

Remarks

Once the loop starts and all statements in the loop have executed, Step is added to counter. At this point, either the statements in the loop execute again (based on the same test that caused the loop to execute initially), or the loop is exited and execution continues with the statement following the Next statement.

Changing the value of counter while inside a loop can make it more difficult to read and debug your code.

Example

For $Count = 0 To 10 Step 2

 ? $Count

Next

FUNCTION

Action

Declares the name, arguments, and code that form the body of a Function procedure.

A Function procedure is a separate procedure that can take arguments, perform a series of statements, and change the values of its arguments. A Function procedure can be used on the right side of an expression in the same way you use any intrinsic function, such as Len or Asc, when you want to use the value returned by the function.

Syntax

Function name [(argument1, argument2, [optional]argumentx)]

 [statements]

 [name = expression]

EndFunction

Parameters

Name
Name of the Function. Note that the name must be unique and can not be the same as a label within the same scope.
Argumentlist
List of variables representing arguments that are passed to the Function procedure when it is called. Multiple variables are separated by commas. All arguments are passed by value. If an argument is preceded by the OPTIONAL keyword, the argument is not required, and all subsequent arguments in the list must also be optional and declared using the OPTIONAL keyword.

Statements
Any group of statements to be executed within the body of the Function procedure.

Expression
Return value of the Function.

Remarks

Function procedures have a global scope, that is, they are visible to all other scripts and procedures in the scripts. The value of local variables in a Function is not preserved between calls to the procedure.

You cannot define a Function procedure inside another procedure.

The Return statement causes an immediate exit from a Function procedure. Program execution continues with the statement that follows the statement that called the Function procedure. Any number of Return statements can appear anywhere in a Function procedure.

You call a Function procedure using the function name, followed by the argument list in parentheses, in an expression.

Note: Function procedures can be recursive, that is, they can call themselves to perform a given task. However, recursion can lead to stack overflow.

To return a value from a function, assign the value to the function name. Any number of such assignments can appear anywhere within the procedure. If no value is assigned to name, the procedure returns an empty value.

Variables used in Function procedures fall into two categories: those that are explicitly declared within the procedure and those that are not. Variables that are explicitly declared in a procedure (using Dim) are always local to the procedure. Variables that are used but not explicitly declared in a procedure are global.

Note: a procedure can use a variable that is not explicitly declared in the procedure, but a naming conflict can occur if anything you have defined at the script level has the same name. If your procedure refers to an undeclared variable that has the same name as another procedure or variable, it is assumed that your procedure is referring to that script-level name.

Examples

Function ReadNC(ServerName)

 $ReadNC = ""
 $Root = GetObject("LDAP://" + ServerName + "/rootDSE")

 If @ERROR = 0

 $ReadNC = $Root.defaultNamingContext

 Endif

EndFunction

GET

Action

Accepts a single character from the keyboard and stores the character in a variable.

Syntax

GET $x

Remarks

The character is stored in the specified script variable. If a function key, such as F1, is pressed, GET returns 0, and @ERROR returns the key code of the function key.

GETS

Action

Reads a line of characters from the keyboard until the <enter> key is pressed, and stores the result in a variable.

Syntax

GETS $x
GLOBAL

Action

Declare one or more global variables.

Syntax

GLOBAL "variable1" [<,>"variablex"]

Remarks

Global variables are visible everywhere in every script during the current KiXtart session.

Examples

GLOBAL $X

GLOBAL $X, $Y, $Z

[GO]

Action

Changes the current drive.

Syntax

[GO] drive

Remarks

Use GO if you want to specify a variable as the drive to change to.

Examples

GO A:

A:

GO $2

GOSUB

Action

Causes script execution to continue at the first statement after a label.

Syntax

GOSUB <label>

Remarks

Label can be an expression.

When a RETURN statement is encountered, script execution continues at the statement following the GOSUB statement.
Note that you can not GOSUB into or out of an INCLUDE file.
Examples

? "This demonstrates calling a subroutine"

GOSUB "Demo"

? "End of demonstration…"

EXIT 1

:Demo

? "We are in the subroutine now…"

RETURN

GOTO

Action

Causes script execution to continue at the first statement after a label.

Syntax

GOTO <label>

Remarks

Label can be an expression.
Note that you can not GOTO into or out of an INCLUDE file.
Examples

GOTO "end"

$string = "end"

GOTO $string
IF ELSE ENDIF

Action

Conditionally runs statements.

Syntax

IF expression
statement1

....
[ELSE

statement2

]
ENDIF

Remarks

The body of an IF statement is executed selectively depending on the value of the expression. If expression is true, then statement1 is executed. If expression is false and the ELSE clause is specified, then statement2 is executed.

IF statements can be nested as many times as memory allows.

If the expression does not contain any relational operators, the condition is considered to be true if it is numeric and it evaluates to a value other than zero, or if it is alphanumeric and it evaluates to a string containing at least one character.

Note that by default, all string comparisons are made case-insensitive. This behavior can be changed using the SetOption function. Please see the description of the SetOption function for full details.

Examples

IF $X

; similar to IF $X <> 0

; do stuff

ENDIF

IF @HOMESHR

; similar to IF @HOMESHR <> ""

; do stuff

ENDIF

IF INGROUP("Admins")

; similar to IF INGROUP("Admins") > 0

; do stuff

ENDIF

IF NOT INGROUP("Domain Admins")
; true if user NOT a Domain Admin

; do stuff

ENDIF

IF $X*2 < 10

; do stuff

ENDIF

IF (($X*2) < 10) OR ($Y + 100) /3 >120

; do stuff

ENDIF

IF INSTR(%PATH%,"NETLOGON") AND @DOS = "3.51"

; do stuff

ENDIF

IF (SUBSTR(@WKSTA,11,1)="1" AND @USERID = "PETERV") OR @DOMAIN = "VleerBeer"

; do stuff

ENDIF

IF @USERID = "RUUDV" OR @USERID = "WIMW"

; do stuff

ENDIF

IF (INGROUP("Domain Users") OR INGROUP("Users"))

; do stuff

ENDIF

INCLUDE

Action

INCLUDE tells KiXtart to treat the contents of a specified file as if those contents had appeared in the script at the point where INCLUDE appears. You can organize script code into include files and then use INCLUDE to add this code to any script.
Include files can be "nested"; that is, an INCLUDE statement can appear in a file named by another INCLUDE statement. Nesting of include files can continue up to 20 levels.
Include files can contain user-defined functions as well as direct script code. Note that the direct script code (i.e.: the code outside user-defined functions) cannot contain labels and that you can not jump into or out of an INCLUDE file.
INCLUDE is most useful when pre-tokenizing files: include-files are effectively merged with the script containing the INCLUDE statements and the end-result is stored as a single pre-tokenized file.

Syntax

INCLUDE "include-scriptname"

Include-scriptname can include an absolute path (“C:\SCRIPTS”) or a relative path (“..\DATA\SCRIPTS”). If you specify a relative path, the path is calculated from the current directory of the KiXtart process.

Remarks

Note that INCLUDE statements are processed during the pre-processing phase of KiXtart at which point macros, variables and functions are not yet available. As such, INCLUDE only supports a single, flat string and you can not use macros, variables or functions in this string.

Script code in INCLUDE files that is not inside user-defined functions cannot contain labels and you can not jump into or out of an INCLUDE file.
MD

Action

Creates a new folder. If necessary, automatically creates any missing intervening folders.
Syntax

MD "directory"

Remarks

Check the value of @ERROR to see if MD was successful (@ERROR = 0).

MOVE

Action

Moves or renames files and directories.

Syntax

MOVE "source" "destination" [/h] [/s]

If the source or destination specifies a directory, please make sure to add a trailing backslash. If the destination exists, the source will be moved below the destination. If the destination does not exist, the source will be renamed.

	/c
	Continue operation, even if errors occur.

	/h
	Moves/renames hidden and system files also.

	/r
	Overwrite read-only files.

	/s
	Renames specified files in all subdirectories.

Remarks

Wildcards are supported.

MOVE overwrites existing files without warning.
Examples

; If NewDir does not exist, this command will RENAME MyDir to NewDir:

MOVE "S:\MyDir\" "S:\NewDir\"

; If NewDir does exist, this command will MOVE MyDir below NewDir:

MOVE "S:\MyDir\" "S:\NewDir\"

; This command will change the extension of all files matching the
; wildcard specification to '.bak'

MOVE "MyDir\file*.txt" "MyDir\file*.bak"

PASSWORD

Action

No function; supported only for compatibility with KiXtart 2.3x.

Syntax

PASSWORD "password"

PLAY

Action

Plays ‘music’ on the computer's speaker, by using the SPK file format described below, or on a sound card by playing a WAV file.

Syntax

PLAY [FILE "path\filename.spk"] | "string" | "path\filename.wav"

There are four possible syntax forms:

(
PLAY FILE "Jbond.spk"

(
PLAY "0g256t 0g8d247f 4d165f 247f 8d262f 4d165f 262f 8d277f 4d165f"

(
PLAY FILE "Ding.wav"

(
PLAY "Chimes.wav"

The string or file consists of a sequence of commands indicating the frequency and duration of the tones to play. The following commands are available:

(
F or f - frequency
This command causes a tone to be produced at the current frequency. The initial current frequency is 1000Hz. To change the value, indicate the desired frequency immediately followed by the f character. For example, to produce a tone at 1500Hz, specify 1500F.

(
G or g - gap
This command sets the number of timer ticks (1 second = 18 ticks) of silence between individual tones. The number of timer ticks between tones is specified as a number immediately followed by G. The initial value is 0.

(
D or d - duration
This command sets the length (in timer ticks) of each tone. For example, to make each tone last about a third of a second, use the command 6d.

(
T or t - tempo
This command scales the duration of each tone. This allows you to change the duration of a series of tones globally, without having to change each of the individual duration commands.A tempo value of 256 indicates normal tempo. A value of 4df lasts:

(
2 timer ticks, when the tempo is set to 128

(
4 timer ticks, when the tempo is set to 256

(
8 timer ticks, when the tempo is set to 512

Remarks

KiXtart automatically selects the appropriate action based on the file name extension you provide.

Example

PLAY
"0g256t 0g8d247f 4d165f 247f 8d262f 4d165f 262f 8d277f 4d165f

277f 8d262f 4d165f 262f 8d247f 4d165f 247f 8d262f 4d165f

262f 8d277f 4d165f 277f 8d262f"

This plays the part of the James Bond theme.

QUIT

Action

Exits KiXtart.

Syntax

QUIT [error level / exit code]

Remarks

If QUIT is followed by a numeric expression, then the value of that expression is used as the exit code of KiXtart, and you can check it using a batch file.

RD

Action

Removes the directory specified. Note: the directory must be empty for this command to succeed.
Syntax

RD "directory"

Remarks

Check the value of @ERROR to see if RD was successful.

REDIM

Action

Declares dynamic-array variables, and allocates or reallocates storage space at procedure level.

Syntax

REDIM [PRESERVE] "variable1" [<,> [PRESERVE] "variablex"]

Remarks

If the Preserve keyword is specified, each dimension except for the rightmost one must be the same as those of the existing array. The values in the existing array are copied into the new array: if the new array is smaller, the existing values are discarded; if the new array is bigger, the extra elements will be empty.

Examples

REDIM $MyArray[20]

REDIM PRESERVE $Array[9]

; Note : preserves contents of the array.

REDIM PRESERVE $FirstArray[9]
, PRESERVE $NextArray[10]

RETURN

Action

Causes script execution to continue at the statement following the last CALL or GOSUB statement, and also returns from inside a UDF.

Syntax

RETURN

Remarks

If RETURN is specified in the main script, KiXtart terminates.

RUN

Action

Runs a command.

Syntax

RUN "command"

Remarks

Command can be any 16-bit or 32-bit application. To run command interpreter commands, specify the correct command interpreter as part of the command.

RUN does not wait for the program to complete. Script execution continues immediately. This behavior is different from the MS‑DOS – based version of KiXtart, where the RUN command also terminates the script. If you want to emulate the MS‑DOS – based version, you must add an EXIT command after the RUN command.

Examples

RUN @LDRIVE + "\UPDATE.EXE"

RUN "%COMSPEC% /e:1024 /c DIR C:"

SELECT CASE … ENDSELECT

Action

A SELECT statement is an efficient way to write a series of IF ELSE statements.

Syntax

SELECT
CASE expression
statement1

....
[CASE expression
statement2

....]
ENDSELECT

Remarks

A SELECT statement consists of one or more conditions (CASE) each of which is followed by one or more statements that are executed only if the condition evaluates to TRUE. The SELECT statement is processed from top to bottom. If an expression evaluates to TRUE, the statements immediately following it are executed, up to the next CASE statement.

Only one CASE statement is executed, regardless of how many statements evaluate to TRUE.

If expression does not contain any relational operators, the condition is considered to be true if it is numeric and if it evaluates to a value other than zero, or if it is alphanumeric and it evaluates to a string containing at least one character.

SELECT statements can be nested as many times as memory allows.

Examples

SELECT

CASE InGroup("Domain Admins") AND @DAY = 1

? "Whatever…"

CASE InGroup("Office Users")

? "Etc…"

? "Etc…"

CASE 1

; this is a nice way to provide a default CASE; if all other

; CASEs fail, this one will always be run

? "Hmm, you're not in one of our groups?"

ENDSELECT

SET

Action

On Windows NT/2000/XP, sets environment variables in the environment of the current user (HKEY_CURRENT_USER\Environment).

On Windows 9x, sets environment variables in the global Windows environment (similar to the functionality offered by WINSET.EXE).

Syntax

SET "variable=string"

Remarks

After any change to the environment, KiXtart informs running programs that the change was made, prompting them to regenerate their environments. Programs that support this feature (such as Program Manager, Task Manager, and Windows Explorer) update their environments when they receive the WM_SETTINGCHANGE message.

The environment of the current process (KiXtart) is not affected.

SETL

Action

Sets environment variables in the local environment that you see when you start a program from within a KiXtart script.

Syntax

SETL "variable=string"

Remarks

This command does not affect the current environment. If you start KiXtart from

a batch file, any commands in the batch file that are run after KiXtart exits do not see changes made by the SET or SETL commands. If you want to run batch files or programs that depend on settings set by KiXtart, start them from KiXtart using SHELL or RUN.

SETL sets the value of @ERROR.

SETM

Action

On Windows NT/2000/XP, sets environment variables in the environment of the local computer (HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Environment).

On Windows 9x, sets environment variables in the global Windows environment (similar to the functionality offered by WINSET.EXE).

Syntax

SETM "variable=string"

Remarks

On Windows NT/2000/XP, after any change to the environment, KiXtart informs running programs that the change was made, prompting them to regenerate their environments. Programs that support this feature (such as Program Manager, Task Manager, and Windows Explorer) update their environments when they receive the WM_SETTINGCHANGE message.

The environment of the current process (KiXtart) is not affected.

SETTIME

Action

Synchronizes the system clock of the local computer with the time on a specified source.

Syntax

SETTIME "source"

Remarks

Source can be one of the following:

	A server name expressed in UNC format
	KiXtart connects to the server specified to retrieve the time.

	A domain name
	KiXtart browses the domain for a server running the Time Source service.

	"*"
	KiXtart browses the local domain for any server running the Time Source service.

On Windows NT or higher, SETTIME requires the current user to have the ‘Change the system time’ privilege.

For more information on running the Windows NT Time Source Service, see Knowledge Base article Q131715 (also available on TechNet).

Examples

SETTIME "*"

SETTIME "\\MYTIME"

SETTIME "TIMEDOMAIN"

SHELL

Action

Loads and runs a program.

Syntax

SHELL "command"

Remarks

Command can be any 16-bit or 32-bit application. To run command interpreter commands, specify the correct command interpreter as part of the command.

Script execution is stopped until the program exits.

If the program you want to run needs to set environment variables (as is the case with Smsls.bat, for example), you may need to specify additional environment space by using the /E parameter.

SHELL sets the value of @ERROR to the exit code of the program that is run.

Examples

SHELL @LDRIVE + "\UPDATE.EXE"

SHELL "%COMSPEC% /e:1024 /c DIR C:"

SHELL "SETW USERNAME=@USERID"

SHELL "CMD.EXE /C COPY " + @LDRIVE + "\FILE.TXT C:\"

SHELL "%COMSPEC% /C COPY Z:\FILE.TXT C:\"

SHELL "C:\WINNT\SYSTEM32\CMD /E:1024 /C " + @LDRIVE + "\SMSLS.BAT"

SLEEP

Action

Halts script execution for the number of seconds specified. Note that you can specify fractions of a second.
Syntax

SLEEP <seconds>
Examples

SLEEP 10

; pause script for 10 seconds

SLEEP 0.5
; pause script for half a second
SMALL

Action

Changes the character mode to small (normal) characters.

Syntax

SMALL

Remarks

After using SMALL, subsequent screen output is normal. For more information, see BIG earlier in this section.

USE

Action

Connect, disconnect or list network connections.
Syntax

USE LIST

USE <* | "device" | "resource"> /DELETE [/PERSISTENT]

USE ["device"] <"resource"> [/USER:user] [/PASSWORD:password] [/PERSISTENT]

Remarks

Use USE "*" /DELETE to delete all current connections except those to a NETLOGON share and those to the drive or share from which KiXtart was started.

If a resource name contains non-alphanumeric characters (such as - or +), enclose the name in quotation marks.

On Windows NT or higher only, the /USER and /PASSWORD parameters enable overriding the security context of the current user.

Check the value of @ERROR to see if USE was successful (a value of 0 indicates success).

The "USE *" syntax enables you to redirect the first available drive to a resource. If redirection is successful, @RESULT will contain the driveletter of the redirected drive.

Examples

USE E: "\\SERVER\PUBLIC" /PERSISTENT

USE * /DELETE

USE E: "\\SERVER\PUBLIC"
/user:Yogi
/password:Bear

USE E: "\\SERVER\PUBLIC"

USE LPT1: "\\SERVER\LASER"
/user:testlan\USER1

USE L: /DEL

USE LIST

USE * @HOMESHR
; connect any drive to user's home share

IF @ERROR = 0

? "Connected " + @RESULT + " to home share…"

ENDIF

USE H: @HOMESHR
; connect to user's home share

IF @ERROR = 0

H:

;

CD @HOMEDIR
; change directory to user's home directory

ENDIF

WHILE - LOOP

Action

Runs a set of statements as long as an expression is true.

Syntax

WHILE "expression"

 statements...

LOOP

Remarks

WHILE loops can be nested as many times as memory allows.

KiXtart Function Reference

Most functions take one or more string or numeric expressions as parameters. String parameters are indicated by double quotation marks around the parameter name. Certain functions allow for optional parameters. If you omit these parameters, the function uses a default value instead.

Return Values

Most functions return either a string or a numeric value, and can thus be used anywhere an expression is expected. Most functions also set the values of @ERROR and @SERROR, which allows you to check if the function was successful.

Registry Functions

All registry functions use the following format to specify registry subkeys:

[\\remote_computer_name\][Key\]Subkey

Remote_computer_name can be any valid computer name in UNC format (preceded by two backslashes). If you do not specify a remote_computer_name, the program defaults to the local registry.

Key can be any of the main registry trees:
HKEY_LOCAL_MACHINE (HKLM)
HKEY_USERS (HKU)
HKEY_CLASSES_ROOT (HKCR)
HKEY_CURRENT_USER (HKCU)

HKEY_CURRENT_CONFIG (HKCC)
If you do not specify a root key, KiXtart will use HKEY_CURRENT_USER as the default.
Subkey can be any valid registry subkey. If the name of a subkey contains spaces, enclose the entire expression in quotation marks.

The following examples show correct syntax of keys:

"\\VLEERBEER\HKEY_LOCAL_MACHINE\CONTROL"
"HKEY_CURRENT_USER\Program Groups\Games"
"Control Panel\International\Sorting Order"
"HKCU\Program Groups\Games"

Note

When gaining access to a remote registry, you can only specify either HKEY_LOCAL_MACHINE or HKEY_USERS. Also, if you want to gain access to a remote registry from Windows 9x, you must enable remote registry access. For more information, see the instructions in the Admin\Nettools\Remotreg directory on the Windows 9x CD.

Caution

KiXtart does not ask for confirmation when registry values are overwritten or when subkeys are deleted. Always be very careful when changing the registry, and preferrably back up your system before changing registry values.

ABS

Action

Returns the absolute value of a number.

Syntax

ABS (expression)
Parameter

Expression
Any valid numeric expression.

Returns

Absolute value of a number.

ADDKEY

Action

Adds the specified subkey to the registry.

Syntax

ADDKEY ("subkey")
Parameter

Subkey
A string that specifies the name of the subkey you want to add to the registry.

Returns

	0
	Subkey added

	Error code
	Function failed

Example

$ReturnCode = AddKey("HKEY_CURRENT_USER\EZReg")
If $ReturnCode = 0
 ? "Key added...."
Endif

ADDPRINTERCONNECTION

Action

Adds a connection to the specified printer for the current user.

Syntax

ADDPRINTERCONNECTION ("printer share")

Parameters

Printer share
The (share)name of the printer to which to connect.

Remarks

This function is available only on Windows NT or higher, and can be used only to connect to printers on a server running under Windows NT or higher.

When Windows NT connects to the printer, it may copy printer driver files to the local computer. If the user does not have permission to copy files to the appropriate location, ADDPRINTERCONNECTION fails, and @ERROR returns ERROR_ACCESS_DENIED.

Returns

	0
	Printer connection established

	Error code
	Function failed

Example

If ADDPRINTERCONNECTION ("\\vleerbeer\hp laserjet 4") = 0
 ? "Added printer connection...."
Endif

ADDPROGRAMGROUP

Action

Instructs Program Manager to create a new program group.

Syntax

ADDPROGRAMGROUP ("group name", common group flag)

Parameters

Group name
Identifies the group window to be added.

Common group flag
Optional numeric parameter. This parameter is available only on Windows NT or higher. Common group flag can have the following values:

	0
	Creates a personal group.

	1
	Creates a common group. The current user must have administrative privileges, or the function fails.

Returns

	0
	Program group added

	Error code
	Function failed

Example

If AddProgramGroup("NewGroup", 0) = 0
 ? "NewGroup has created...."
Endif

ADDPROGRAMITEM

Action

Instructs Program Manager to add an icon to the active program group.

Syntax

ADDPROGRAMITEM ("command line", "name", "icon path", icon index, "default directory", minimize, replace, run in own space)

Parameters

Command line
Specifies the command line required to run the application. This parameter is a string containing the name of the executable file for the application. It can also include the path of the application and any required parameters.

Name
Specifies the title that is displayed below the icon in the group window.

Icon path
Identifies the file name for the icon to display in the group window. This string identifies a Windows-based executable file or an icon file. If no icon path is specified, Program Manager uses the first icon in the file specified by command line if that file is an executable file.

If command line specifies a file that has been associated with a program, Program Manager uses the first icon provided in the executable file of that program. Association information is obtained from the registry. If command line specifies neither an executable file nor an associated program, Program Manager uses a default icon.

Icon index
This parameter is an integer that specifies the index of the icon in the file identified by the icon path parameter. Program Manager includes five default icons that can be used for programs not written for Windows.

Default directory
Specifies the name of the default (or working) directory. This parameter is a string.

Minimize
Optional numeric parameter. Specifies whether an application window is minimized when first displayed. Possible values for this parameter are:

	0
	Default system setting

	1
	Minimize

Replace
Optional numeric parameter. Specifies whether ADDPROGRAMITEM replaces an existing program item with the same name. Possible values for this parameter are:

	0
	Adds a new program item without replacing the existing one. This is the default.

	1
	Replaces any existing program item.

Run in own space
Optional numeric parameter. Specifies whether the program runs in its own address space. This parameter applies only to 16-bit Windows applications running on Windows NT or higher. This parameter can have the following values:

	0
	Does not run in separate address space. This is the default.

	1
	Runs in separate address space.

Remarks

There is a limit of 50 items that can be added to each program group.

Returns

	0
	Program item added

	Error code
	Function failed

Example

If AddProgramItem("c:\windows\regedit.exe","RegEdit","",0,"c:\",0,0) = 0
 ? "Added program item 'RegEdit' to current group..."
Endif

ASC

Action

Returns the ASCII code of the character specified.

Syntax

ASC (character)

Parameter

Character
Character you want to know the ASCII code of.

Returns

Numeric value representing the ASCII code of the character.

Example

$ASCII = Asc("H")
ASCAN

Action

Searches an array for an element containing the same value as an expression.

Syntax

ASCAN (array, expression, start, length, mode)

Parameters

Array
Name of the array to search.

Expression
Specifies the expression to search for.

Start
Optional argument specifying the element number at which the search begins. The element number you specify is included in the search.

Length
Optional value specifying the number of elements to scan. If you omit this value, the search continues to the last array element.
Mode
Optional parameter indicating whether or not AScan should scan the array for an element exactly matching the search string (default behaviour) or for an element containing the search string. Possible values:

	0
	Search for exact match (default).

	1
	Search for an element containing the search string.

Returns

	>=0
	ID of the element that matches the expression.

	-1
	Expression not present in array

Example

$Array = 1,2,3,5,7,11,13

$x = ASCAN($Array, 3) ; will return '2'
$Array = 'SomeString', 'AnotherString', 'LastString'

$x = ASCAN($Array, 'other', , , 1) ; will return '1'

AT

Action

Places the cursor in the position indicated.

Syntax

AT (row, column)

Parameters

Row
Specifies the row at which to position the cursor.

Column
Specifies the column at which to position the cursor.

Remarks

The cursor position is expressed in screen coordinates. A value of 0,0 represents the top left corner of the screen.

The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.

Returns

Nothing.

BACKUPEVENTLOG

Action

Creates a backup of a Windows NT eventlog.

Syntax

BACKUPEVENTLOG ("eventlog", "backupfile")

Parameter

Eventlog
String indicating the eventlog to backup. By default, Windows NT supports three eventlogs: "Application", "Security" and "System". Optionally, the string can include the name of a remote system on which to backup the log.

Backupfile
String indicating the name of the backupfile. Note: the file must not exist.

Returns

	0
	Eventlog backed up.

	>0
	Errorcode.

Examples

BackupEventlog("Application" , "C:\eventbackups\application.evt")

BackupEventlog("\\PDC\Application" , "C:\eventbackups\application.evt")

BackupEventlog("System" , "C:\eventbackups\system.evt")

BOX

Action

Draws a box.

Syntax

BOX (top_left_row, top_left_column, bottom_right_row, bottom_right_column, "line style")

Parameters

Top_left_row, top_left_column, bottom_right_row, bottom_right_column
The four corners of the box to be drawn, expressed in screen coordinates. A value of 0,0 represents the top left corner of the screen.

Line style
Possible values for line style are:

	single
	Single line outline, space as filler

	double
	Double line, space as filler

	full
	Full line, space as filler

	grid
	Single line, cross as filler

You can also create a custom box by using a string value for line style. The string can contain as many as 9 characters, which are defined as follows.

	This character in the string
	
Represents this portion of the box

	1st
	Top-left corner

	2nd
	Top horizontal

	3rd
	Top -right corner

	4th
	Right vertical

	5th
	Bottom -right corner

	6th
	Bottom horizontal

	7th
	Bottom -left corner

	8th
	Left vertical

	9th
	Filler

Remarks

The BOX command is ignored if all output is redirected to a file (or the console) using the REDIRECTOUTPUT function.

Returns

Nothing.

Example

BOX (10, 10, 12, 15, "+-+|+-+| ") ;

produces the following box:

 +---+
 | |
 +---+

CDBL

Action

Returns an expression that has been converted to a Variant of subtype Double.

Syntax

CDBL (expression)

Parameter

Expression
Any valid expression.

Returns

Variant of subtype Double.

CHR

Action

Insert special characters, such as carriage returns, in a string.

Syntax

CHR (character code)

Parameter

Character code
A numeric expression representing the character code to insert.

Returns

The string representation of the character code.

Example

$Message = "Hello " + @USERID + Chr(13) + Chr(10)+ "Welcome to our network."

CINT

Action

Returns an expression that has been converted to a Variant of subtype Integer.
Syntax

CINT (expression)

Parameter

Expression
Any valid expression.

Returns

Variant of subtype Integer.
Remarks

CInt differs from the Fix and Int functions, which truncate, rather than round, the fractional part of a number. When the fractional part is exactly 0.5, the CInt function always rounds it to the nearest even number. For example, 0.5 rounds to 0, and 1.5 rounds to 2.

CLEAREVENTLOG

Action

Clears a Windows NT eventlog.

Syntax

CLEAREVENTLOG ("eventlog")

Parameter

Eventlog
String indicating the eventlog to clear. By default, Windows NT supports three eventlogs: "Application", "Security" and "System". Optionally, the string can include the name of a remote system on which to clear the log.

Returns

	0
	Eventlog cleared.

	>0
	Errorcode.

Examples

ClearEventlog("Application")

ClearEventlog("\\PDC\Application")

ClearEventlog("System")

CLOSE

Action

Closes a file previously opened by the OPEN function.

Syntax

CLOSE (file handle)

Parameter

File handle
A numeric expression indicating the file handle of the file to close. Possible values range from 1 to 10.

Returns

	-2
	Invalid file handle specified

	0
	File closed

Example

IF Close(3)

Beep

? "Error closing file!"

ENDIF

COMPAREFILETIMES

Action

Compares the date and time of two files.

Syntax

COMPAREFILETIMES ("file1", "file2")

Parameter

File1
Identifies the first file you want to compare.

File2
Identifies the second file you want to compare.

Returns

	-3
	File2 could not be opened (see @ERROR for more information).

	-2
	File1 could not be opened (see @ERROR for more information).

	-1
	File1 is older than file2.

	0
	File1 and file2 have the same date and time.

	1
	File1 is more recent than file2.

Example

$Result = CompareFileTimes(@LDRIVE + "\USER.INI", "C:\WINDOWS\USER.INI")

IF $Result = 1 OR $Result = -3

COPY @LDRIVE + "\USER.INI" "C:\WINDOWS\USER.INI"

ENDIF

CREATEOBJECT

Action

CreateObject launches (if necessary) the OLE Automation server and returns a handle through which an OLE Automation object can be manipulated.

Syntax

CREATEOBJECT ("serverclassname.typename")

Parameters

ServerClassName

The name of the application providing the object.

TypeName

The type or class of the object to create.

Returns

If the function succeeds it returns the handle to the object. If the function fails, it returns 0.

Example

$ObjectHandle = CreateObject("WScript.Shell")

CSTR

Action

Returns an expression that has been converted to a Variant of subtype String.

Syntax

CSTR (expression)

Parameter

Expression
Any valid expression.

Returns

Variant of subtype String.

DECTOHEX

Action

Returns the hexadecimal representation of a decimal value.

Syntax

DECTOHEX (Decimal value)

Parameter

Decimal value
The value you want to have the hexadecimal representation of.

Returns

A string representing the hexadecimal value of the input value.

Example

$Result = DecToHex(123)

DELKEY

Action

Deletes the specified subkey from the registry.

Syntax

DELKEY ("subkey")

Parameter

Subkey
A string that specifies the name of the subkey you want to delete.

Remarks

This call fails if any subkeys exist within the specified subkey. Use DELTREE if you want to delete a subkey that contains subkeys.

Returns

	0
	Subkey deleted

	Error code
	Function failed

Example

$ReturnCode = DelKey("HKEY_CURRENT_USER\EZReg")
If $ReturnCode = 0
 ? "Key deleted...."
Endif

DELPRINTERCONNECTION

Action

Deletes a connection to a printer that was established by using ADDPRINTERCONNECTION.

Syntax

DELPRINTERCONNECTION ("printer name")

Parameters

Printer name
A string that specifies the name of the printer connection to delete.

Remarks

This function is only available on Windows NT or higher.

The DELPRINTERCONNECTION function does not delete any printer driver files that were copied from the server on which the printer resides when the printer connection was established.

Returns

	0
	Printer connection deleted

	Error code
	Function failed

Example

If DelPrinterConnection ("hplaser4") = 0

 ? "Deleted printer connection...."

Endif

DELPROGRAMGROUP

Action

Instructs Program Manager to delete an existing program group.

Syntax

DELPROGRAMGROUP ("group name", common group flag)

Parameters

Group name
Identifies the group to be deleted.

Common group flag
Optional numeric parameter. This parameter is available only on Windows NT or higher. Common group flag can have the following values:

	0
	Deletes a personal group.

	1
	Deletes a common group. The current user must have administrative privileges, otherwise the function fails.

Remarks

When this function runs, no confirmation is asked nor warning given.

Returns

	0
	Program group deleted

	Error code
	Function failed

Example

If DelProgramGroup("NewGroup", 0) = 0

 ? "NewGroup deleted...."

Endif

DELPROGRAMITEM

Action

Instructs Program Manager to delete an item from the active program group.

Syntax

DELPROGRAMITEM ("item name")

Parameter

Item name
Specifies the item to be deleted from the active program group.

Returns

	0
	Program item deleted

	Error code
	Function failed

Example

If DelProgramItem("Whatever") = 0

 ? "ProgramItem 'Whatever' deleted from the current group...."

Endif

DELTREE

Action

Deletes a subkey from the registry, including all the subkeys contained in the specified subkey.

Syntax

DELTREE ("subkey")

Parameter

Subkey
Specifies the subkey to be deleted from the registry.

Remarks

When this function runs, no confirmation is asked nor warning given.

Returns

	0
	Subkey deleted

	Error code
	Function failed

Example

$ReturnCode = DelTree("HKEY_CURRENT_USER\EZReg")

If $ReturnCode = 0

 ? "Key deleted...."

Endif

DELVALUE

Action

Deletes a value entry from the registry.

Syntax

DELVALUE ("subkey", "entry")

Parameter

Subkey
A string that specifies the name of the subkey from which you want to delete an entry.

Entry
A string that specifies the name of the entry you want to delete.

Returns

	0
	Value entry deleted

	Error code
	Function failed

Example

$ReturnCode =DelValue("HKEY_CURRENT_USER\EZReg", "Test")

If $ReturnCode = 0

 ? "Value deleted...."

Endif

DIR

Action

Dir can be used to enumerate the files in a directory. Dir returns a string representing the name of a file, directory, or folder that matches a specified pattern. To retrieve subsequent entries in a directory, specify an empty string ("") as the path.

Syntax

DIR ("path", index)

Parameter

Path
Optional string that specifies a file name — may include directory or folder, and drive. If path is empty (""), Dir will return the next file of the previously opened enumeration handle. Wildcards (‘*’ and ‘?’) are supported.

Index
Optional number indicating which enumeration handle to use. The Dir function can enumerate two directories at the same time. To open the second enumeration handle, specify 1 for the index.

Returns

Returns a string representing the name of a file, directory, or folder that matches a specified pattern. An empty string ("") is returned if path is not found or to indicate that the end of the current enumeration was reached. Dir also sets the value of @ERROR :

	0
	Dir successful.

	Error code
	Function failed.

Example

$FileName = Dir("C:\TEMP*.*")

While $FileName <> "" and @ERROR = 0

? $FileName

$FileName = Dir()
; retrieve next file

Loop

ENUMGROUP

Action

Enumerates all groups of which the current user is a member.

Syntax

ENUMGROUP (Index)

Parameter

Index
A numeric value representing the group whose name you want to discover (where 0 is the first subkey).

Returns

	String
	Group name

	Error code
	Function failed

Example

$Index = 0

DO

 $Group = ENUMGROUP($Index)

 $Index = $Index + 1

UNTIL Len($Group) = 0

ENUMIPINFO

Action

Enables enumeration of TCP/IP information of all network adapters of the local system.

Syntax

ENUMIPINFO (index, type, mode)

Parameter

Index
A numeric value representing the IP information group you want to discover (where 0 is the first group).

Type
Optional parameter identifying the type of information you want to enumerate.

	0
	IP address

	1
	Subnet mask

	2
	Adapter description

	3
	Default gateway

Mode
Optional parameter indicating whether or not EnumIPInfo should rediscover IP information from the system. If this parameter is omitted, EnumIPInfo retrieves IP information from the system during the first call, caches the information and re-uses the information on subsequent calls in the current KiXtart session. Possible values:

	0
	Re-use cached information.

	1
	Retrieve current IP information from the system.

Returns

A string representing the requested information.

Remarks

This function is available on Windows XP, Windows 2000 and Windows 9x, but not on Windows NT. Furthermore, this function relies on a correct installation of the IP Helper API which is installed as part of Microsoft Internet Explorer 5.0 and higher. Note that there is a known issue with installing the required DLLs on Windows 9x. Full details on this issue can be found in the following KnowledgeBase article: http://support.microsoft.com/support/kb/articles/Q234/5/73.ASP.
Example

$Result = EnumIPInfo()

ENUMKEY

Action

Lists the names of the subkeys contained in a registry key or subkey.

Syntax

ENUMKEY ("subkey", index)

Parameters

Subkey
Specifies the key or subkey for which you want to enumerate the subkeys.

Index
A numeric value representing the position of the subkey whose name you want to discover. Zero (0) represents the first subkey in the key.

Returns

	0
	Function returns a string representing the subkey in the specified key

	Error code
	Function failed

	259
	Subkey does not exist

Example

$Index = 0

:Loop1

$KeyName = ENUMKEY("HKEY_CURRENT_USER\Console\ ", $Index)

If @ERROR = 0

? "Name found: $KeyName"

$Index = $Index + 1

goto Loop1

Endif

ENUMLOCALGROUP

Action

Enumerates local groupmembership of the current user on a trusted domain or a member server.

Syntax

ENUMLOCALGROUP (index, "source")

Parameter

Index
A numeric value representing the group whose name you want to discover (where 0 is the first subkey).

Source
String value representing the server or domain whose local groups you want to query.

Remarks

Local group membership in the logon domain can be enumerated using ENUMGROUP. EnumLocalGroup is intended for local groups in other domains or on member servers.

Returns

	String
	Local group name

	Error code
	Function failed

Example

$Index = 0

DO

 $Group = ENUMLOCALGROUP($Index)

 $Index = $Index + 1

UNTIL Len($Group) = 0

- Or -

$Index = 0

DO

 $Group = ENUMLOCALGROUP($Index, "\\MyServer")

 $Index = $Index + 1

UNTIL Len($Group) = 0

ENUMVALUE

Action

Lists the names of the registry entries contained in a specific key or subkey.

Syntax

ENUMVALUE ("subkey", index)

Parameters

Subkey
Specifies the key or subkey for which you want to enumerate the value entries.

Index
A numeric value representing the position of the entry whose name you want to discover. Zero (0) represents the first entry in the subkey.

Returns

	0
	Function returns a string representing the entry in the specified key or subkey

	Error code
	Function failed

	259
	Entry does not exist

Example

$Index = 0

:Loop1

$ValueName = ENUMVALUE("HKEY_CURRENT_USER\Console\Configuration", $Index)

If @ERROR = 0

? "Name found: $ValueName"

$Index = $Index + 1

goto Loop1

Endif

EXECUTE

Action

Executes a piece of KiXtart script code.

Syntax

EXECUTE (script code)

Parameter

Script code
A string expression representing the code to execute.

Returns

The exitcode of the executed script.

Examples

$Rc = Execute('? "This is a demo of the Execute() function"')

$Rc = Execute('$$X = 10')
; note the extra '$'
$Rc = Execute('$$X = ' + @USERID)

EXIST

Action

Checks for the existence of one or more files.

Syntax

EXIST ("file name")

Parameters

File name
Identifies the file(s) you want to locate.

Remarks

Supports wildcards.

Returns

	0
	File not found

	1
	File found

Examples

IF EXIST (@LDRIVE + "\users.txt")

DISPLAY @LDRIVE + "\users.txt"

ENDIF

IF EXIST (@LDRIVE + "*.INI")

; Etc, etc.

ENDIF

EXISTKEY

Action

Checks for the existence of a registry subkey.

Remarks

EXISTKEY is only supported for backward compatibility. New scripts should use the new KEYEXIST function.

EXPANDENVIRONMENTVARS

Action

Expands any environment variables inside a string to the corresponding plain text value.

Syntax

EXPANDENVIRONMENTVARS ("string")

Parameter

String
The string you want to expand.

Returns

The expanded string.

Example

$Value = ReadValue("HKLM\System\CurrentControlset\Control\Windows", "SystemDirectory")

? ExpandEnvironmentVars($Value)

FIX

Action

Fix removes the fractional part of number and returns the resulting integer value.

Note that if the number is negative, Fix returns the first negative integer greater than or equal to number. For example, Fix converts -6.3 to -6.

Syntax

FIX (expression)

Parameter

Expression
Any valid numeric expression.

Returns

Variant of subtype Integer.

FORMATNUMBER

Action

Returns an expression formatted as a number.

Syntax

FORMATNUMBER (expression, decimalplaces, leadingdigit, parentheses, group)

Parameter

Expression
Any valid numeric expression.

DecimalPlaces
Optional numeric value indicating how many places to the right of the decimal are displayed. Default value is -1, which indicates that the computer's regional settings are used.

LeadingDigit
Optional tri-state constant that indicates whether or not a leading zero is displayed for fractional values. See below for values.

Parentheses
Optional tri-state constant that indicates whether or not to place negative values within parentheses. See below for values.

Group
Optional tri-state constant that indicates whether or not numbers are grouped using the group delimiter specified in the control panel. See below for values.

Possible values for the tri-state constants:

	-1
	True.

	0
	False.

	-2
	Use the setting from the computer's regional settings.

Returns

Formatted number.

FREEFILEHANDLE

Action

Returns the first available file handle.

Syntax

FREEFILEHANDLE ()

Parameters

None

Returns

	0
	No file handle available

	>0
	File handle

Example

$Handle = FreeFileHandle()

IF $Handle > 0

 IF Open($Handle, @LDRIVE + "\CONFIG\SETTINGS.INI") = 0

 ………

 ENDIF

ENDIF

GETDISKSPACE

Action

Returns the number of kilobytes (KB) available to the current user on a specific drive.

Syntax

GETDISKSPACE ("drive")

Parameter

Drive
String that specifies a directory on the disk of interest. On Windows NT and on Windows 95 OSR2 and later versions, this string can be a UNC name. If this parameter is a UNC name, you must follow it with an additional backslash. For example, you would specify \\MyServer\MyShare as \\MyServer\MyShare\.

If Drive is an empty string, GetDiskSpace obtains information about the disk that contains the current directory.

On Windows NT and on Windows 95 OSR2 and later versions, Drive does not have to specify the root directory on a disk. On these platforms, the function accepts any directory on a disk.

Returns

A number representing the number of kilobytes (KB) available to the current user on the drive specified.

Remarks

On Windows 95 OSR1 and earlier versions, the function can only return correct values for volumes that are smaller than 2 gigabytes in size. On Windows NT and Windows 95 OSR2 and later versions, the function always returns correct values, regardless of the size of the volume.

Examples

$Result = GetDiskSpace("C:\")

$Result = GetDiskSpace("X:\MARKETING")

GETFILEATTR

Action

Returns the attributes of a file.

Syntax

GETFILEATTR ("file name")

Parameter

File name
Identifies the file for which you want to retrieve the attributes.

Returns

Zero to indicate the function failed. If the function failed, check @ERROR for details on the error. Otherwise, the return value represents the attributes of the file. The attributes can be one or more of the following values:

	1
	Read only
	The file or directory is read-only. Applications can read the file but cannot write to it or delete it. In the case of a directory, applications cannot delete it.

	2
	Hidden
	The file or directory is hidden. It is not included in an ordinary directory listing.

	4
	System
	The file or directory is part of, or is used exclusively by, the operating system.

	16
	Directory
	The filename identifies a directory.

	32
	Archive
	The file or directory is an archive file or directory. Applications use this attribute to mark files for backup or removal.

	64
	Encrypted
	The file or directory is encrypted. For a file, this means that all data streams are encrypted. For a directory, this means that encryption is the default for newly created files and subdirectories.

	128
	Normal
	The file or directory has no other attributes set. This attribute is valid only if used alone.

	256
	Temporary
	The file is being used for temporary storage. File systems attempt to keep all of the data in memory for quicker access rather than flushing the data back to mass storage. A temporary file should be deleted by the application as soon as it is no longer needed.

	512
	Sparse file
	The file is a sparse file.

	1024
	Reparse point
	The file has an associated reparse point.

	2048
	Compressed
	The file or directory is compressed. For a file, this means that all of the data in the file is compressed. For a directory, this means that compression is the default for newly created files and subdirectories.

	4096
	Offline
	The data of the file is not immediately available. Indicates that the file data has been physically moved to offline storage.

Example

$Result = GetFileAttr(@LDRIVE + "\Kix32.exe")

IF GetFileAttr("C:\TEMP") & 16

; note the use of the ‘&’ operator

; to check just bit 4

 ? "C:\temp is a directory !"
ENDIF

GETFILESIZE

Action

Returns the size of a file in bytes.

Syntax

GETFILESIZE ("file name")

Parameter

File name
Identifies the file for which you want to retrieve the size.

Returns

Size of the file in bytes.

Remarks

The maximum size of files that GetFileSize can correctly report the size of is 2,147,483,647 bytes.

Example

$Result = GetFileSize(@LDRIVE + "\Kix32.exe")

GETFILETIME

Action

Returns the date and time information of a file.

Syntax

GETFILETIME ("file name","mode")
Parameter

File name
Identifies the file for which you want to retrieve the date and time information.
Mode
Optional integer parameter indicating which date/time information GetFileTime should return. Possible values:

	0
	Return last write time (default).

	1
	Return creation time.

	2
	Return last access time.

Returns

A string representing the date and time of the file in the format "YYYY/MM/DD HH:MM:SS".

Example

$Result = GetFileTime(@LDRIVE + "\Kix32.exe")

GETFILEVERSION

Action

Returns a version information string of a file.

Syntax

GETFILEVERSION ("file name","versionfield")

Parameter

File name
Identifies the file for which you want to get the version string.

Versionfield
Optional parameter identifying the specific version information field that should be retrieved. By default, the FileVersion field is returned. Possible values for this field are :

BinFileVersion
Returns a string representation of the binary file version information (e.g.: "4.22.0.0").

BinProductVersion
Returns a string representation of the binary product version information (e.g.: "4.22.0.0").

Comments
This field contains any additional information that should be displayed for diagnostic purposes.

CompanyName
This field identifies the company that produced the file. For example, "Microsoft Corporation" or "Standard Microsystems Corporation, Inc."

FileDescription
This field describes the file in such a way that it can be presented to users. This string may be presented in a list box when the user is choosing files to install. For example, "Keyboard driver for AT-style keyboards" or "Microsoft Word for Windows".

FileVersion
This field member identifies the version of this file. For example, "3.00A" or "5.00.RC2".

InternalName
This field identifies the file's internal name, if one exists. For example, this string could contain the module name for a dynamic-link library (DLL), a virtual device name for a Windows virtual device, or a device name for an MS-DOS device driver.

Language
Full English name of the language of the file specified in the format defined by ISO Standard 639. (example : "0413Dutch (Standard)").

LegalCopyright
This field describes all copyright notices, trademarks, and registered trademarks that apply to the file. This should include the full text of all notices, legal symbols, copyright dates, trademark numbers, and so on. In English, this string should be in the format "Copyright Microsoft Corp. 1990–1994".

LegalTrademarks
This field describes all trademarks and registered trademarks that apply to the file. This should include the full text of all notices, legal symbols, trademark numbers, and so on. In English, this string should be in the format "Windows is a trademark of Microsoft Corporation".

OriginalFilename
This field identifies the original name of the file, not including a path. This enables an application to determine whether a file has been renamed by a user. This name may not be MS-DOS 8.3-format if the file is specific to a non-FAT file system.

PrivateBuild
This field describes by whom, where, and why this private version of the file was built. For example, "Built by OSCAR on \OSCAR2".

ProductName
This field identifies the name of the product with which this file is distributed. For example, this string could be "Microsoft Windows".

ProductVersion
This field identifies the version of the product with which this file is distributed. For example, "3.00A" or "5.00.RC2".

SpecialBuild
This field describes how this version of the file differs from the normal version. For example, "Private build for Olivetti solving mouse problems on M250 and M250E computers".

Returns

A string representing the file version field.

Remarks

The information returned by this function is the same as the version information displayed in Windows Explorer.

This function applies only to 32-bit Windows – based executable files.

Example

$Result = GetFileVersion(@LDRIVE + "\Kix32.exe")

$Result = GetFileVersion(@LDRIVE + "\Kix32.exe", "ProductVersion")

GETOBJECT

Action

GetObject gets an object either from a file stored on disk and returns a handle to the object.

Syntax

GETOBJECT ("objectname")

Parameters

ObjectName

Full path and name of the file containing the object to retrieve. If pathname is omitted, class is required.

Returns

If the function succeeds it returns the handle to the object. If the function fails, it returns 0, and @ERROR will be set to a relevant errorcode.

Example

$ObjectHandle = GetObject("LDAP://localhost")

IIF

Action

Returns one of two values depending on the value of a logical expression.

Syntax

IIF(expression, returnvalue1, returnvalue2)

Parameters

Expression

Specifies the logical expression that IIF() evaluates.

ReturnValue1

If expression evaluates to true, ReturnValue1 is returned by IIF.

ReturnValue2

If expression evaluates to false, ReturnValue2 is returned by IIF.

Returns

ReturnValue1 or ReturnValue2, depending on the expression.

Example

FOR EACH $Element IN $Array

$Total = $Total + IIF($Element = "SomeValue", 10, 99)

NEXT
INGROUP

Action

Checks whether the current user is a member of one or more groups.

Syntax

INGROUP ("group name" [<,> "group name 2"], Mode)

Parameter

Group name1, group name 2, group name …
Identifies the group(s) in which to check the user's membership. Multiple group names may be passed as arguments. Alternatively, you may specify a single, one-dimensional, array of which the element(s) are the names of one or more groups to test.
Mode
Optional integer parameter indicating whether or not Ingroup checks for groupmembership of one or all groups in the list (default = 0). Possible values:

	0
	Ingroup checks for membership of ONE of the groups in the list (default).

	1
	Ingroup checks for membership of ALL of the groups in the list.

Remarks

INGROUP can be used to check for group membership of groups that exist on the domain or server where the user is logged on, or to check for group membership of groups on a specific domain or server.

When checking for a local group, INGROUP identifies that the user is indirectly a member of the group by virtue of being a member of a global group which, in turn, is a member of the local group.

If you want to check for membership in a group on a specific domain or server, use the following format:

"OtherDomain\group"

– Or –

"\\SomeServer\group"

On Windows 9x clients, INGROUP works on local groups only if the KiXtart RPC service is running.

Returns

	0
	The user is not a member of any of the groups specified.

	1
	The user is a member of one or more groups.

Example

IF INGROUP("Domain Users")

DISPLAY "z:\users.txt"

ENDIF

IF INGROUP("Developers", "Testers") = 1

? "Member of Developers OR Testers group"

ENDIF

IF INGROUP("Developers", "Testers", 1) = 1

? "Member of Developers AND Testers group"

ENDIF

$Array = "Developers", "Testers"

IF INGROUP($Array, 1) = 1

? "Member of Developers AND Testers group"

ENDIF

IF INGROUP("\\" + @WKSTA + "\Developers") = 1

? "Member of Developers on local system"

ENDIF

INSTR

Action

Searches a string for the presence of a second string.

Syntax

INSTR ("string1", "string2")

Parameters

String1
The string to search in.

String2
The string to search for.

Returns

	?
	Offset of the first character of string2 found in string1, counted from the beginning of string1

	0
	String2 not present in string1

Example

$x = INSTR(@DOMAIN, "TEST") ; check if domain contains the string "TEST"

INSTRREV

Action

Searches a string for the presence of a second string. The search is started from the end of the source string. Note that the offset returned is counted from the beginning of the source string.
Syntax

INSTRREV ("string1", "string2")

Parameters

String1
The string to search in.

String2
The string to search for.

Returns

	?
	Offset of the first character of string2 found in string1, counted from the beginning of string1

	0
	String2 not present in string1

Example

$x = INSTRREV(@CURDIR, "\") ; find last backslash in @CURDIR

INT

Action

Int removes the fractional part of number and returns the resulting integer value.

Note that if the number is negative, Int returns the first negative integer less than or equal to number. For example, Int converts -6.3 to -7.

Syntax

INT (expression)

Parameter

Expression
Any valid numeric expression.

Returns

Variant of subtype Integer.

ISDECLARED

Action

Returns a Boolean value indicating whether a variable has been declared.

Syntax

ISDECLARED (variable)

Parameter

Variable
Required. Name of the variable to check.

Returns

A boolean.

Example

If IsDeclared($MyVar)

….

EndIf

JOIN

Action

Returns a string created by joining a number of substrings contained in an array.

Syntax

JOIN (array, "delimiter", count)

Parameter

Array
Required. One-dimensional array containing substrings to be joined.

Delimiter

Optional. String character used to separate the substrings in the returned string. If omitted, the space character (" ") is used. If delimiter is a zero-length string (""), all items in the list are concatenated with no delimiters.

Count

Optional. Number of array elements to join.

Returns

A string.

Example

$Myarray = "aaa", "bbb", "ccc"
$String = Join($Myarray, "=")
; $string now contains "aaa=bbb=ccc"

$String = Join($Myarray, "=", 2)
; $string now contains "aaa=bbb"

KBHIT

Action

Checks the console for keyboard input.

Syntax

KBHIT ()

Returns

	<>0
	Keystroke waiting in keyboard buffer

	0
	No keystroke in keyboard buffer.

Example

IF KbHit()

 Get $x ; get the keystroke from the buffer

ENDIF

KEYEXIST

Action

Checks for the existence of a registry subkey.

Syntax

KEYEXIST ("subkey")

Parameter

Subkey
Identifies the subkey you want to locate.

Remarks

KEYEXIST is a replacement to the EXISTKEY function found in previous versions of KiXtart. While functionally equivalent, the Return Codes are now inverted, resulting in behavior similar to the EXIST function.
Returns

	0
	Subkey not found

	1
	Subkey found

Example

$ReturnCode = KeyExist("HKEY_CURRENT_USER\Console\Configuration")

If $ReturnCode

 ? "Key exists...."

Endif

LCASE

Action

Returns a string in lowercase.

Syntax

LCASE ("string")

Parameters

String
The string you want to change to lowercase.

Returns

The input string in lowercase.

Example

$x = LCASE(@USERID)

LEFT

Action

Returns a specified number of characters from the left side of a string.

Syntax

LEFT ("string", length)

Parameters

String
String expression from which the leftmost characters are returned.

Length
Numeric expression indicating how many characters to return. If 0, a zero-length string is returned. If greater than or equal to the number of characters in string, the entire string is returned. Specifying a negative value will cause Left to return the number of characters equal to the total length of the string minus the value specified.
Returns

The substring requested.

Example

$x = LEFT(@USERID, 2) ; get the first 2 chars of the userid

LEN

Action

Returns the length of a string.

Syntax

LEN ("string")

Parameter

String
The string whose length you want to discover.

Returns

The number of characters contained in the specified string.

Example

$x = LEN(@USERID)

LOADHIVE

Action

Creates a subkey under HKEY_USERS or HKEY_LOCAL_MACHINE and stores registration information from a specified file into that subkey. This registration information is in the form of a hive. A hive is a discrete body of keys, subkeys, and values that is rooted at the top of the registry hierarchy. A hive is backed by a single file and .LOG file.

Syntax

LOADHIVE ("key", "file name")

Parameters

Key
The key you want to load the information in. This key must reside under HKEY_LOCAL_MACHINE or HKEY_USERS.

File name
Identifies the file you want to load the information from. This file specified needs to be a legal registry hive (created by SAVEKEY, or from REGEDT32.EXE).

Remarks

On Windows NT or higher, using LOADHIVE requires Backup and Restore privileges.

Returns

	0
	Hive loaded

	Error code
	Function failed

Example

$ReturnCode = LoadHive("HKEY_USERS\EZReg", "c:\temp\tst.reg")

If $ReturnCode = 0

 ? "Hive loaded...."

Endif

LOADKEY

Action

Loads a registry key (including its subkeys and values) from a file.

Syntax

LOADKEY ("subkey", "file name")

Parameters

Subkey
The subkey in which you want to load the information. This subkey must exist for the call to be successful.

File name
Identifies the file from which to import the information. This file must be a valid registry hive file created by using the SAVEKEY function, or by using a registry editor.

Remarks

On Windows NT or higher, using LOADKEY requires Backup and Restore privileges.

Caution

LOADKEY imports information into the registry and overwrites any existing subkey. This replaces all the subkeys and values that may already exist in the subkey you are loading. Any existing values and subkeys are lost.

Returns

	0
	Subkey loaded

	Error code
	Function failed

Example

$ReturnCode = LoadKey("HKEY_CURRENT_USER\KiXtart", "c:\temp\tst.reg")

If $ReturnCode = 0

 ? "Key loaded...."

Endif

LOGEVENT

Action

Logs an event in the Windows NT event log.

Syntax

LOGEVENT (type, ID, message, target, source)

Parameter

Type

Number representing the type of the event. Possible values :

	0
	SUCCESS

	1
	ERROR

	2
	WARNING

	4
	INFORMATION

	8
	AUDIT_SUCCESS

	16
	AUDIT_FAILURE

ID

Number representing the event that occurred.
Message
Message text of the event. Note that the length of the message is limited to 32000 characters.
Target
Optional parameter representing the UNC name of the system where the event should be logged. By default, all events are logged on the local system.

Source
Optional parameter representing the source of the event. If this parameter is not specified, Kixtart will assume the KIX32.EXE as the source of the event.

Returns

	0
	Event logged

	Error code
	Function failed

Remarks

This function is only available on clients running Windows NT or higher.

Example

$RC = LogEvent(0 , 1 , "Logon script completed successfully" , "", "MyEvent")

$RC = LogEvent(0 , 1 , "Logon script completed successfully")

$RC = LogEvent(1 , 1 , "Logon script failed!" , @LSERVER)

LOGOFF

Action

Logs the current user off and ends the Windows session.

Syntax

LOGOFF (force)

Parameter

Force

During a logoff operation, applications that are shut down are allowed a specific amount of time to respond to the logoff request. If the time expires, Windows displays a dialog box that allows the user to forcibly shut down the application, to retry the logoff, or to cancel the logoff request. If the Force value is true (i.e. : non-zero), Windows always forces applications to close and does not display the dialog box.

	0
	Windows does not force applications to close.

	1
	Windows always forces applications to close and does not display the dialog box.

Returns

	0
	User logged off

	Error code
	Function failed

Example

$RC = LogOff(0)

LTRIM

Action

Strips leading spaces from an input string and returns the result.

Syntax

LTRIM ("string")

Parameter

String
The string from which to strip leading spaces.

Returns

The input string without leading spaces.

Example

$x = LTRIM(SUBSTR(@IPADDRESS0, 1, 3)); 192

MEMORYSIZE

Action

Returns memory statistics, in Megabytes.

Syntax

MEMORYSIZE (type)

Parameter

Type
Optional number, indicating the type of memory you want statistics on. Possible values:

	0
	Total physical memory (default)

	1
	Available physical memory

	2
	Total size of pagefile

	3
	Available space in pagefile

Returns

The amount of memory, in Megabytes.

Example

$x = MemorySize()

MESSAGEBOX

Action

Displays a standard dialog box in Windows.

Syntax

MESSAGEBOX ("message", "title", style, time-out)

Parameters

Message
The message to display in the dialog box.

Title
The title of the dialog box.

Style
Optional numeric expression that is the sum of values specifying the number and type of buttons to display, the icon style to use, the identity of the default button, and the modality. The following table illustrates the values used and the meaning of each group of values.

Buttons to display

	Value
	Meaning

	0
	Display OK button only.

	1
	Display OK and Cancel buttons.

	2
	Display Abort, Retry, and Ignore buttons.

	3
	Display Yes, No, and Cancel buttons.

	4
	Display Yes and No buttons.

	5
	Display Retry and Cancel buttons.

Icon to display

	Value
	Meaning

	16
	Stop symbol

	32
	Question mark

	48
	Exclamation mark

	64
	Information symbol

Default button

	Value
	Meaning

	0
	First button is default.

	256
	Second button is default.

	512
	Third button is default.

Modality

	Value
	Meaning

	0
	Application-modal. The user must respond to the message box before continuing work in the application.

	4096
	System-modal. All applications are suspended until the user responds to the message box.

When adding numbers to create a final value for the argument type, use only one number from each group. If style is omitted, a default value of 0 is assumed.

Time-out
Optional numeric expression representing the number of seconds after which to close the dialog box.

Note

The time-out feature only works if the MESSAGEBOX dialog box is the active window for the duration of the time-out. If the user switches away from KiXtart and activates another application, the MESSAGEBOX dialog box is not closed.

Remarks

MESSAGEBOX displays a maximum of 1024 characters in application-modal dialog boxes. Longer messages are truncated after the 1024th character. Message strings longer than 255 characters with no intervening spaces are truncated after the 255th character. For system-modal dialog boxes, the number of characters you can display depends on screen resolution and number of lines in the message.

MESSAGEBOX breaks lines automatically at the right edge of the dialog box. If you want to set line breaks yourself, place a linefeed (ANSI character 10) before the first character of the text that is to begin each new line.

Returns

The value returned by MESSAGEBOX indicates which button was selected, as shown in the following table.

	Value
	Meaning

	-1
	User did not respond to the dialog box within the specified time-out period.

	1
	OK button selected.

	2
	Cancel button selected.

	3
	Abort button selected.

	4
	Retry button selected.

	5
	Ignore button selected.

	6
	Yes button selected.

	7
	No button selected.

If the dialog box contains a Cancel button, pressing esc has the same effect as choosing Cancel.

Example

$Selection = MessageBox("Do you want to continue ?", "KiXtart", 36)

If $Selection = 6

 ? "Yes selected, continuing...."

Endif

OPEN

Action

Opens a text file.

Syntax

OPEN (file handle, "file name", mode)

Parameters

File handle
A numeric expression indicating the file handle of the file to open. Possible values range from 1 to 10.

File name
A string expression indicating the path and name of the ASCII file to open.

Mode
Optional parameter that indicates what should happen if the file does not exist. This parameter can have the following values:

	0
	If the file does not exist, OPEN fails with return code 2 (default).

	1
	If the file does not exist, OPEN will create a new file.

	2
	Opens the file for read access (default).

	4
	Opens the file for write access.

Note

These values are cumulative. So if you want to open a file for write access, and create it if it does not yet exist, you should specify 5. Notice however that a file can not be opened for read and write access at the same time.

Remarks

OPEN opens the ASCII file specified by file name, for the internal buffer indicated by file handle. KiXtart supports a maximum of ten open files, so file handle must be within the range of 1 to 10.

Returns

	-3
	File handle already in use

	-2
	Invalid file handle specified

	-1
	Invalid file name specified

	0
	File opened successfully

	>0
	System error

Example

IF Open(3, @LDRIVE + "\CONFIG\SETTINGS.INI") = 0

 $x = ReadLine(3)

 WHILE @ERROR = 0

 ? "Line read: [" + $x + "]"

 $x = ReadLine(3)

 LOOP

ENDIF

READLINE

Action

Reads a line from a file.

Syntax

READLINE (file handle)

Parameter

File handle
A numeric expression indicating the file handle of the file to open. Possible values range from 1 to 10.

Remarks

READLINE reads a string ending in a carriage return. If successful, the function returns the string without the carriage return.
In order to improve read performance, the first READLINE on a file reads the entire file into memory, and subsequent READLINE commands read lines from memory.

Returns

	-4
	File not open for reading

	-3
	File handle not open

	-2
	Invalid file handle specified

	-1
	End of file

	0
	Line read successfully

Example

IF Open(3, @LDRIVE + "\CONFIG\SETTINGS.INI") = 0

 $x = ReadLine(3)

 WHILE @ERROR = 0

 ? "Line read: [" + $x + "]"

 $x = ReadLine(3)

 LOOP

 Close (3)

ELSE

 BEEP

 ? "Config file not opened, error code: [" + @ERROR + "]"

ENDIF

READPROFILESTRING

Action

Retrieves a string from an initialization file.

Syntax

READPROFILESTRING ("file name", "section", "key")

Parameters

File name
A string that names the initialization file. If this parameter does not include a full path, Windows searches for the file in the Windows directory.

Section
A string that specifies the section containing the key name. If this parameter is empty, READPROFILESTRING returns all section names in the file.

Key
A string containing the key name whose associated string is to be retrieved. If this parameter is empty, all key names in the section specified by section are returned.

Remarks

This function is provided for compatibility with 16-bit Windows – based applications. Win32 – based applications store initialization information in the registry.

Returns

	0
	Function returns a string representing the value of the specified key

Example

$dev = ReadProfileString("win.ini", "Windows", "Device")

READTYPE

Action

Returns the ASCII representation of a registry entry data type (for example, REG_SZ).

Syntax

READTYPE ("subkey", "entry")

Parameters

Subkey
Identifies the subkey containing the entry.

Entry
Identifies the entry whose data type you want to discover.

Returns

ASCII representation of data type of specified registry entry.

The following data types can be returned:

(
REG_NONE
(
REG_SZ
(
REG_EXPAND_SZ
(
REG_BINARY
(
REG_DWORD
(
REG_DWORD_LITTLE_ENDIAN
(
REG_DWORD_BIG_ENDIAN
(
REG_LINK
(
REG_MULTI_SZ
(
REG_RESOURCE_LIST
(
REG_FULL_RESOURCE_DESCRIPTOR

Example

$RowsType = ReadType("HKEY_CURRENT_USER\Console\Configuration", "WindowRows")

If @ERROR = 0

 ? "Type of WindowRows: $RowsType"

Endif

READVALUE

Action

Reads a registry value and returns it as an ASCII string.

Syntax

READVALUE ("subkey", "entry")

Parameters

Subkey
Identifies the subkey containing the entry.

Entry
Identifies the entry whose value you want to discover. To read the default entry of a key, specify an empty string as the entry name ("").
Returns

ASCII representation of the specified registry value.

REG_MULTI_SZ (multi-string) variables are returned with the pipe symbol (|) used as the separator between strings. If a string contains a pipe symbol character, it is represented by two pipe symbol characters (||).

REG_DWORD variables are returned in decimal format.

Example

$Rows = ReadValue("HKEY_CURRENT_USER\Console\Configuration", "WindowRows")

If @ERROR = 0

 ? "Number of window-rows: $Rows"

Endif

REDIRECTOUTPUT

Action

Redirects all screen output to a file.

Syntax

REDIRECTOUTPUT ("file name", overwrite)

Parameters

File name
A string naming the file to which output should be redirected. If this parameter is an empty string (""), output is redirected to the screen. Note that output can also be redirected to the CON or NUL device.
Overwrite

Optional numeric value indicating whether to clear the output file before writing any data to it. This parameter can have the following values:

	0
	New output data appended to the existing contents of file.

	1
	All data in file overwritten when the output is redirected to the file.

Remarks

If all output is redirected to a file, the AT, BIG, BOX, and CLS commands are ignored.

Returns

	0
	Output redirected

	Error code
	Function failed

Example

IF RedirectOutput("logon.log") = 0

? "Opened 'logon.log' at " + @TIME ?

ENDIF

RIGHT

Action

Returns a specified number of characters from the right side of a string.

Syntax

RIGHT ("string", length)

Parameters

String
String expression from which the rightmost characters are returned.

Length
Numeric expression indicating how many characters to return. If 0, a zero-length string is returned. If greater than or equal to the number of characters in string, the entire string is returned. Specifying a negative value will cause Right to return the number of characters equal to the total length of the string minus the value specified.
Returns

The substring requested.

Example

$x = RIGHT(@USERID, 2) ; get the last 2 chars of the userid

RND

Action

Returns a pseudo random number.

Syntax

RND (Range)

Parameter

Range
Optional parameter indicating the range for the return value (maximum and default value = 32767).

Returns

Pseudo random number.

Remarks

The RND function returns a pseudorandom integer ranging from 0 to the maximum specified. Use the SRND function to seed the pseudorandom-number generator before calling RND.

Example

$x = RND()

$x = RND(10)

ROUND

Action

Returns a number rounded to a specified number of decimal places.

Syntax

ROUND (expression, decimalplaces)

Parameter

Expression
Any valid numeric expression.

Decimalplaces
Optional number indicating how many places to the right of the decimal are included in the rounding. If omitted, Round returns an integer.

Returns

Rounded number.

RTRIM

Action

Strips trailing spaces from an input string and returns the result.

Syntax

RTRIM ("string")

Parameter

String
The string from which to strip trailing spaces.

Returns

The input string without trailing spaces.

Example

$x = RTRIM(SUBSTR(@IPADDRESS0, 1, 3)); 192

SAVEKEY

Action

Saves a registry key (including its subkeys and value entries) to a file.

Syntax

SAVEKEY ("subkey", "file name")

Parameters

Subkey
Identifies the subkey you want to save.

File name
Identifies the file in which to save the information.

Remarks

When this function runs, the destination file is overwritten without warning.

On Windows NT, running SAVEKEY requires Backup and Restore privileges.

Returns

	0
	Subkey saved

	Error code
	Function failed

Example

$ReturnCode = SaveKey("HKEY_CURRENT_USER\EZReg", "c:\temp\tst.reg")

If $ReturnCode = 0

 ? "Key saved...."

Endif

SENDKEYS

Action

Sends one or more keystrokes to the active window as if typed at the keyboard.

Syntax

SENDKEYS ("keys")

Parameters

Keys
String specifying the keystrokes to send.

Each key is represented by one or more characters. To specify a single keyboard character, use the character itself. For example, to represent the letter A, use "A" for string. To represent more than one character, append each additional character to the one preceding it. To represent the letters A, B, and C, use "ABC" for string. The plus sign (+), caret (^),tilde (~), and parentheses () have special meanings to SendKeys. To specify one of these characters, enclose it within braces ({}). For example, to specify the plus sign, use {+}. To specify brace characters, use {{} and {}}.

To specify characters that aren't displayed when you press a key, such as ENTER or TAB, and keys that represent actions rather than characters, use the codes shown below:

	BACKSPACE
	{BACKSPACE}

	BREAK
	{BREAK}

	CAPS LOCK
	{CAPSLOCK}

	DEL
	{DEL}

	DOWN ARROW
	{DOWN}

	END
	{END}

	ENTER
	{ENTER}

	ESC
	{ESC}

	HELP
	{HELP}

	HOME
	{HOME}

	INS
	{INS}

	LEFT ARROW
	{LEFT}

	NUM LOCK
	{NUMLOCK}

	PAGE DOWN
	{PGDN}

	PAGE UP
	{PGUP}

	PRINTSCREEN
	{PRTSC}

	RIGHT ARROW
	{RIGHT}

	TAB
	{TAB}

	UP ARROW
	{UP}

	F1
	{F1}

	F2
	{F2}

	F3
	{F3}

	F4
	{F4}

	F5
	{F5}

	F6
	{F6}

	F7
	{F7}

	F8
	{F8}

	F9
	{F9}

	F10
	{F10}

	F11
	{F11}

	F12
	{F12}

	F13
	{F13}

	F14
	{F14}

	F15
	{F15}

	F16
	{F16}

To specify keys combined with any combination of the SHIFT, CTRL, and ALT keys, precede the key code with one or more of the following codes:

	SHIFT
	+

	CTRL
	^

	ALT
	~

To specify that any combination of SHIFT, CTRL, and ALT should be held down while several other keys are pressed, enclose the code for those keys in parentheses. For example, to specify to hold down SHIFT while E and C are pressed, use "+(EC)". To specify to hold down SHIFT while E is pressed, followed by C without SHIFT, use "+EC".

To specify repeating keys, use the form {key number}. You must put a space between key and number. For example, {LEFT 42} means press the LEFT ARROW key 42 times; {h 10} means press H 10 times.

Remarks

SendKeys cannot be used to send keystrokes to an application that is not designed to run in Microsoft Windows. Sendkeys also can't send the PRINT SCREEN key {PRTSC} to any application.

Returns

	0
	Keystrokes sent

	Error code
	Function failed

Example

Run("Notepad.exe")

Sleep 1

SetFocus("Untitled – Notepad")

$ReturnCode = SendKeys("Hello World")

Sleep(2)

$ReturnCode = SendKeys("~{F4}Y")

SENDMESSAGE

Action

Sends a message across the network to another user or workstation.

]

Syntax

SENDMESSAGE ("recipient", "message")

Parameters

Recipient
Identifies the user or workstation to which to send the message.

Message
The message to send.

Returns

	0
	Message sent

	Error code
	Function failed

Example

$ReturnCode = SendMessage("ADMIN" , @USERID + " logged in at " + @TIME)

If $ReturnCode = 0

 ? "Message has been sent.."

Endif

SETASCII

Action

Enables/disables ASCII console output. In KiXtart, standard console output is in Unicode, and SetASCII enables you to change this to ASCII, so you can output extended characters, such as line characters.

Syntax

SETASCII("mode")

Parameters

Mode
String that specifies whether to turn ASCII output on or off. Specifying "ON" will turn ASCII output on, and specifying "OFF" will turn ASCII output off.

Returns

	"ON" | "OFF"
	Previous output state.

Example

$previousstate = SetASCII("ON")

? "═══════════"
; output ASCII line characters

SetASCII($previousstate)

Remarks

SETASCII is only supported for backward compatibility. New scripts should use the SETOPTION function.

SETCONSOLE

Action

Changes the display state of the command-prompt window in which KiXtart is running.

Syntax

SETCONSOLE("mode")

Parameters

Mode
String that specifies the new display state. The following table shows the display states that are supported by this function.

	SHOW
	Show window

	HIDE
	Hide window

	FOREGROUND
	Move window to foreground

	ALWAYSONTOP
	Bring window to top

	MINIMIZE
	Minimize window

	MAXIMIZE
	Maximize window

Remarks

If a window is hidden, it does not disappear from the system, but remains active.

Returns

	0
	Display state changed

	Error code
	Function failed

Example

If SetConsole ("FOREGROUND") = 0

 ? "Console moved to foreground......"

Endif

SETDEFAULTPRINTER

Action

Sets the default printer to which applications send print jobs.

Syntax

SETDEFAULTPRINTER ("printer name")

Parameters

Printer name
String that specifies the fully qualified name of the printer to set as the default printer. Note that if the printer involved was connected to using AddPrinterConnection, you must include both the servername and the printer name.
Returns

	0
	Default printer set

	Error code
	Function failed

Example

If AddPrinterConnection ("\\vleerbeer\hp laserjet 4") = 0
 ? "Added printer connection...."
 If SetDefaultPrinter ("\\vleerbeer\hp laserjet 4") = 0

 ? "Set default printer to HP LaserJet 4...."

 Endif

Endif

SETFILEATTR

Action

Sets the attributes of a file.

Syntax

SETFILEATTR ("file name", attributes)

Parameter

File name
Identifies the file of which you want to set the attributes.

Attributes
Attributes to set for the file. The attributes can be one or more of the following values:

	1
	Read only
	The file or directory is read-only. Applications can read the file but cannot write to it or delete it. In the case of a directory, applications cannot delete it.

	2
	Hidden
	The file or directory is hidden. It is not included in an ordinary directory listing.

	4
	System
	The file or directory is part of, or is used exclusively by, the operating system.

	32
	Archive
	The file or directory is an archive file or directory. Applications use this attribute to mark files for backup or removal.

	128
	Normal
	The file or directory has no other attributes set. This attribute is valid only if used alone.

	256
	Temporary
	The file is being used for temporary storage. File systems attempt to keep all of the data in memory for quicker access rather than flushing the data back to mass storage. A temporary file should be deleted by the application as soon as it is no longer needed.

	4096
	Offline
	The data of the file is not immediately available. Indicates that the file data has been physically moved to offline storage.

Returns

	0
	Attributes set

	Error code
	Function failed

Example

$Result = SetFileAttr(@LDRIVE + "\Kix32.exe", 32)

SETFOCUS

Action

Sets the input focus to the application specified. This function is very useful in combination with the SendKeys function.

Syntax

SETFOCUS ("Title")

Parameters

Title
String specifying the title in the title bar of the application window you want to activate. In determining which application to activate, title is compared to the title string of each running application. If there is no exact match, any application whose title string begins with title is activated. If there is more than one instance of the application named by title, one instance is arbitrarily activated.

Returns

	0
	Focus set to specified application.

	Error code
	Function failed

Example

If SetFocus ("Untitled - Notepad") = 0

 ? "Focus set to Notepad...."

Endif

SETOPTION

Action

SetOption can be used to configure certain options of the KiXtart script engine.

Syntax

SETOPTION("option", "value")

Parameters

Option
Option to set.

Value
Value for the option.
The options and possible values are described in the following table:

	ASCII
	ON, OFF
	Default console output is in Unicode. Setting the ASCII option to ON changes the output to ASCII, so you can output extended characters, such as line characters.

	CaseSensitivity
	ON, OFF
	By default, all string comparisons are case-insensitive. Setting the CaseSensitivity option to ON configures KiXtart to make string comparisons case-sensitive.

	DisableDebugging
	ON
	Disables debugging (effectively disables the DEBUG ON command). Note that debugging can not be re-enabled.

	Explicit
	ON, OFF
	When you enable the Explicit option, you must explicitly declare all variables using the Dim, Global, or ReDim statements. If you attempt to use an undeclared variable name, an error occurs.

Use the Explicit option to avoid incorrectly typing the name of an existing variable.

	HideCursor
	ON,OFF
	Hides or shows the console cursor.

	NoMacrosInStrings
	ON,OFF
	Determines resolution of macros inside strings. If this option is enabled, any ‘@’ character in a string will be left as-is. The default is OFF.

	NoVarsInStrings
	ON,OFF
	Determines resolution of variables inside strings. If this option is enabled, any ‘$’ character in a string will be left as-is. The default is OFF.

	WrapAtEOL
	ON,OFF
	Enables/disables wrapping of console output at the end of a line. The default is OFF.

Returns

SetOption returns the previous state of the option.

Example

$previousstate = SetOption("ASCII", "ON")

? "═══════════"
; output ASCII line characters

$previousstate = SetOption("ASCII", $previousstate)

SETSYSTEMSTATE

Action

Changes the (power)state of the computer.

Syntax

SETSYSTEMSTATE (mode, force)

Parameters

Mode
Optional parameter specifying one of the following modes:

	Value
	Action

	0
	Lock system (supported on Windows 2000 or higher only).

	1
	Standby.

	2
	Hibernate.

	3
	Poweroff.

Force

Specifies whether applications with unsaved changes are forcibly closed. If force is not zero, applications are closed. If force is zero, a dialog box is displayed prompting the user to close the applications.

Returns

	0
	Action succeeded

	System error code
	Action failed

Example

$RC = SetSystemState(1 , 1) ; Force system to StandBy mode

SETTITLE

Action

Sets the title of the current console.

Syntax

SETTITLE("title")

Parameters

Title
String that will be used as the new title for the current console.

Remarks

The title is only active while KiXtart runs. As soon as KiXtart exits, the original title of the console will be restored.

Returns

	0
	Title set

	Error code
	Function failed

Example

If SetTitle ("KiXtart Logon") = 0

 ? "Set the new title...."

Endif

SETWALLPAPER

Action

Sets the current wallpaper.

Syntax

SETWALLPAPER("wallpaper name", mode)

Parameters

Wallpaper name
String that specifies the name of the bitmap to set as the default wallpaper.

Mode
Optional parameter specifying one of the following modes:

	Value
	Action

	0
	Only change the wallpaper for the duration of the current logon session.

	1
	Changes the wallpaper in the user profile.

Remarks

The file specified must be a valid BMP file.

Returns

	0
	Wallpaper set

	Error code
	Function failed

Example

If SetWallpaper ("kixtart.bmp") = 0

 ? "Set current wallpaper to KiXtart.bmp...."

Endif

SHOWPROGRAMGROUP

Action

Instructs Program Manager to minimize, maximize, or restore the window of an existing program group.

Syntax

SHOWPROGRAMGROUP ("group name", show command, common group flag)

Parameters

Group name
Identifies the group window to minimize, maximize, or restore.

Show command
Specifies the action Program Manager is to perform on the group window. This parameter is an integer and it must have one of the following values.

	Value
	Action

	1
	Activates and displays the group window. If the window is minimized or maximized, Windows restores it to its original size and position.

	2
	Activates the group window and displays it as an icon.

	3
	Activates the group window and displays it as a maximized window.

	4
	Displays the group window in its most recent size and position. The active window remains active.

	5
	Activates the group window and displays it in its current size and position.

	6
	Minimizes the group window.

	7
	Displays the group window as an icon. The active window remains active.

	8
	Displays the group window in its current state. The active window remains active.

Common group flag
Optional numeric parameter. This parameter is available only on Windows NT or higher. Common group flag can have the following values:

	0
	Acts upon a personal group.

	1
	Acts upon a common group. To manipulate a common group, the user must have administrative privileges, or the function fails.

Returns

	0
	Program group maximized, minimized, or restored

	Error code
	Function failed

Example

If ShowProgramGroup("NewGroup", 6, 0) = 0

 ? "NewGroup has been minimized...."

Endif

SHUTDOWN

Action

Shuts down or reboots a computer.

Syntax

SHUTDOWN ("computer", "message", wait, force, options)

Parameters

Computer
The name of the computer that is to be shut down or rebooted. An empty string("") indicates the local computer.

Message

String that specifies a message to display in the Shutdown dialog box.

Wait

Optional parameter specifying the time in seconds that the dialog box is displayed. While the dialog box is displayed, system shutdown can be stopped by using the Win32 AbortSystemShutdown function.

If wait is not zero, SHUTDOWN displays a dialog box on the specified computer. The dialog box, which displays the name of the user who called the function and the message specified by message, prompts the user to log off. The system beeps when the dialog box is created.

The dialog box remains on top of other windows and can be moved but not closed. A timer counts down the time remaining before a forced shutdown. If the user logs off, the system shuts down immediately. Otherwise, the computer is shut down when the timer expires.
If wait is zero, the computer shuts down without displaying the dialog box, and the shutdown cannot be stopped by AbortSystemShutdown.

Force

Specifies whether applications with unsaved changes are forcibly closed. If force is not zero, applications are closed. If force is zero, a dialog box is displayed prompting the user to close the applications.

Options
Optional parameter specifying one of the following options.

	Value
	Action

	1
	Reboot computer after shutdown.

	2
	Poweroff the system after shutdown (NB: this option only works for the local system).

Returns

	0
	Computer shut down

	System error code
	Function failed

Remarks

SHUTDOWN does not work reliably on Windows 9x due to an issue in the underlying Windows API. As a workaround, the following command can be used:

SHELL "%windir%\RUNDLL32.EXE user.exe,ExitWindows"
Example

$RC = Shutdown("", "System is being rebooted to enable new settings.", 60, 0, 1)

SIDTONAME

Action

Translates a Security Identifier (SID) into a name.

Syntax

SIDTONAME ("sid")

Parameter

SID

String representation of SID to translate.

Remarks

SIDTONAME is not supported on Windows 9x.

Returns

	0
	Name corresponding to SID.

	Error code
	Function failed

Example

? SidToName("S-1-1-0")
; displays ‘Everyone’

If InGroup(SidToName("S-1-5-32-544"))

 ? "Must mean current user is a member of local Administrators"
Endif

SPLIT

Action

Returns a zero-based, one-dimensional array containing a specified number of substrings.

Syntax

SPLIT ("string", "delimiter", count)

Parameter

String

Required. String expression containing substrings and delimiters. If expression is a zero-length string, Split returns an empty array, that is, an array with no elements and no data.

Delimiter

Optional. String character(s) used to identify substring limits. If omitted, the space character (" ") is assumed to be the delimiter. If delimiter is a zero-length string, a single-element array containing the entire expression string is returned.

Count

Optional. Number of substrings to be returned; -1 indicates that all substrings are returned.

Returns

An array containing the substrings found in the input string.

Example

$Myarray = Split("aaa~~bbb~~ccc", "~~")

For Each $Element In $MyArray

 ? $Element

; will display "aaa", "bbb" and "ccc"
Next

SRND

Action

The SRND function sets the starting point for generating a series of pseudorandom integers. To reinitialize the generator, use 1 as the seed argument. Any other value for seed sets the generator to a random starting point. RND retrieves the pseudorandom numbers that are generated. Calling RND before any call to SRND generates the same sequence as calling SRND with seed passed as 1.

Syntax

SRND (seed)

Parameter

Seed
Numeric value to seed the generator with.

Returns

Nothing.

Example

SRND(@MSECS)

SUBSTR

Action

Returns part of a string.

Syntax

SUBSTR ("string", start, length)

Parameters

String
The string from which to extract a substring.

Start
Numeric value representing the offset in the string where the substring begins.

Length
Optional numeric value representing the length of the substring. If omitted or if there are fewer than Length characters in the text (including the character at start), all characters from the start position to the end of the string are returned.
Returns

The substring indicated by start and length.

Example

$x = SUBSTR(@USERID, LEN(@USERID) - 2, 2) ; get the last 2 chars of the userid

TRIM

Action

Strips leading and trailing spaces from an input string and returns the result.

Syntax

TRIM ("string")

Parameter

String
The string from which to strip spaces.

Returns

The input string without leading and trailing spaces.

Example

$x = TRIM(SUBSTR(@IPADDRESS0, 1, 3))

UBOUND

Action

Returns the largest available subscript for one of the dimensions of an array.

Syntax

UBOUND (array, dimension)

Parameter

Array
The array you want to know the upper boundary of.

Dimension
Optional parameter indicating the dimension of the array you want to know the upper boundary of. The default is 1.
Returns

	-1
	Array dimension has zero elements.

	>= 0
	Largest available subscript for the indicated dimension of the array.

Example

$x = UBOUND($MyArray)

UCASE

Action

Returns a string in uppercase.

Syntax

UCASE ("string")

Parameter

String
The string you want to change to uppercase.

Returns

The input string in uppercase.

Example

$x = UCASE(@USERID)

UNLOADHIVE

Action

Unloads the specified key and subkeys from the registry.

Syntax

UNLOADHIVE ("key")

Parameters

Key
The key you want to unload. This key must have been created using LoadHive.

Remarks

On Windows NT, using UNLOADHIVE requires Backup and Restore privileges.

Returns

	0
	Key loaded

	Error code
	Function failed

Example

$ReturnCode = UnLoadHive("HKEY_USERS\Fiets")

If $ReturnCode = 0

 ? "Hive unloaded...."

Endif
VAL

Action

Returns the numeric value of a string.

Syntax

VAL ("string")

Parameter

String
The string whose numeric value you want to discover. By default, Val expects the string to be in decimal format. To determine the numeric value of a hexadecimal string, start the string with an ampersand ‘&’.

Returns

The numeric value of the input string.

Examples

$x = VAL(SUBSTR(@IPADDRESS0, 1, 3))

$x = VAL("&A34")

VARTYPE

Action

Returns an integer value indicating the subtype of a variable.

Syntax

VARTYPE($variable)

Parameters

Variable
Any type of variable.

Returns

	0
	Empty

	1
	Null (no valid data)

	2
	Integer

	3
	Long integer

	4
	Single-precision floating-point number

	5
	Double-precision floating-point number

	6
	Currency

	7
	Date

	8
	String

	9
	Object handle

	10
	Error

	11
	Boolean

	12
	Variant (used only with arrays of Variants)

	13
	A data-access object

	17
	Byte

	8192
	Array (can only occur in combination with one of the other values)

Example

$MyVar = "AnyData"
? VarType($MyVar)

; will display "8" (String)

$MyArray = "a","b","c"
? VarType($MyArray)

; will display "8204" (Array of variants)

? VarType($MyArray[0])

; will display "8" (String)

VARTYPENAME

Action

Returns a string that provides type information about a variable.

Syntax

VARTYPENAME ($variable)

Parameters

Variable
Any type of variable.

Returns

	Byte
	Byte value

	Char
	Single character value

	Integer
	Integer value

	Long
	Long integer value

	Single
	Single-precision floating-point value

	Double
	Double-precision floating-point value

	Currency
	Currency value

	Decimal
	Decimal value

	Date
	Date or time value

	String
	Character string value

	Boolean
	Boolean value; True or False

	Empty
	Unitialized

	Null
	No valid data

	Object
	Generic object

	Unknown
	Unknown object type

	Nothing
	Object variable that doesn't yet refer to an object instance

	Error
	Error

	[]
	Array (can only occur in combination with one of the other values)

Example

? VarTypeName("KiXtart") ; Displays "String".

? VarTypeName(4) ; Displays "Long".

? VarTypeName(37.50) ; Displays "Double".

? VarTypeName($ArrayVar) ; Displays "Variant[]".

WRITELINE

Action

Appends a line to the end of a file. If WriteLine encounters an error, @ERROR is set to the relevant errorcode.

Syntax

WRITELINE (file handle, "linetowrite")

Parameter

File handle
A numeric expression indicating the file handle of the file to append to. Possible values range from 1 to 10.

LineToWrite
The string you want to write to the file.

Remarks

WriteLine does not automatically append a <Carriage Return>, so if you want to write a <Carriage Return>, you should add it to the string (as in : $LineToWrite + @CRLF).

Returns

	-4
	File not open for writing

	-3
	File handle not open

	-2
	Invalid file handle specified

	-1
	End of file

	0
	Line written successfully

Example

IF Open(3 , "C:\TEMP\LOG.TXT" , 5) = 0

 $x = WriteLine(3 , "KiXtart started at " + @TIME + @CRLF
ELSE

 BEEP

 ? "failed to open file, error code : [" + @ERROR + "]"

ENDIF
WRITEPROFILESTRING

Action

Copies a string to an initialization file.

Syntax

WRITEPROFILESTRING ("file name", "section", "key", "string")

Parameters

File name
String identifying the initialization file. If this parameter does not include a full path, Windows searches for the file in the Windows directory.
Section
String containing the name of the section of the initialization file where string is copied. If the section does not exist, it is created. The section name is not case-sensitive, and can contain any combination of uppercase and lowercase letters.

Key
String containing the name of the key to associate with string. If the key does not exist in the specified section, it is created. If this parameter is empty, the entire section, including all entries within the section, is deleted.

String
String to write to the file. If this parameter is empty, the key identified by key is deleted.

Note

On Windows 9x, use of the tab character (\t) is not supported as part of this parameter.

Remarks

This function is provided for compatibility with 16-bit Windows-based applications. Win32-based applications store initialization information in the registry.

Returns

	0
	Profile string written

	Error code
	Function failed

WRITEVALUE

Action

Creates a new key, adds another value-name to an existing key (and assigns it a value), or changes the value of an existing value-name.
Syntax

WRITEVALUE ("subkey", "entry", "expression", "data type")

Parameters

Subkey
Identifies the subkey where you want to write a value entry.

Entry
The name of the entry. To write to the default entry of a key, specify an empty string as the entry name ("").

Expression
The data to store as the value of the entry.

REG_MULTI_SZ (multi-string) variables are returned with the pipe symbol (|) used as the separator between strings. If a string contains a pipe symbol character, it is represented by two pipe symbol characters (||).

Data type
Identifies the data type of the entry.

The following data types are supported:

(
REG_NONE
(
REG_SZ
(
REG_EXPAND_SZ
(
REG_BINARY
(
REG_DWORD
(
REG_DWORD_LITTLE_ENDIAN
(
REG_DWORD_BIG_ENDIAN
(
REG_LINK
(
REG_MULTI_SZ
(
REG_RESOURCE_LIST
(
REG_FULL_RESOURCE_DESCRIPTOR

Returns

	0
	Value entry written

	Error code
	Function failed

Example

WriteValue("EZReg\Test", "A MultiString variable", "Line 1|Line 2|Line 3 with a || in it|", "REG_MULTI_SZ")

If @ERROR = 0

 ? "Value written to the registry"

Endif

KiXtart Macro Reference

Macros can be used anywhere an expression is expected. Supported macros are defined in the following table.

	Macro
	Definition

	@ADDRESS
	Address of the network adapter

	@BUILD
	Build number of the operating system

	@COLOR
	Current console colour setting

	@COMMENT
	User comment

	@CPU
	Name of the CPU (e.g.: "Intel Pentium III").

	@CRLF
	Carriage-return + Line-feed

	@CSD
	CSD information (e.g.: "Service Pack 1")

	@CURDIR
	Current directory

	@DATE
	Date (in the format YYYY/MM/DD)

	@DAY
	Day of the week (Monday, Tuesday, and so on)

	@DOMAIN
	Domain or workgroup the computer belongs to

	@DOS
	Version of Windows NT

	@ERROR
	Return code of the most recent command or function. A return code of 0 means the command or function was successful. Any other value indicates an error.

	@FULLNAME
	Full name of current user

	@HOMEDIR
	Short name of the directory part of home directory

	@HOMEDRIVE*
	Drive letter of drive containing home directory

	@HOMESHR
	Server and share name part of home directory

	@HOSTNAME
	Fully qualified TCP/IP host name (including TCP/IP domain name)

	@INWIN
	Operating system: 1 = Windows NT; 2 = Windows 9x

	@IPADDRESSx
	TCP/IP address (possible values for x are 0 - 3).
Note Addresses are padded so that the resulting string always consists of four sets of three characters separated by periods. For example, if your IP address is 123.45.6.7, @IPADDRESS0 is 123. 45. 6. 7.

	@KIX
	KiXtart product name and version

	@LANROOT
	Directory where network software resides (usually Systemroot\System32)

	@LDOMAIN*
	Logon domain

	@LDRIVE
	Drive that is redirected to \\logonserver\NETLOGON

	@LM
	Version of network software

	@LOGONMODE
	If 1, indicates that KiXtart assumes to be running during the logon sequence

	@LONGHOMEDIR
	Long name of the directory part of home directory

	@LSERVER
	Logon server

	@MAXPWAGE
	Maximum password age

	@MDAYNO
	Day of the month (1-31)

	@MHZ
	Approximation of the CPU speed. Not available on Windows 9x.

	@MONTHNO
	Months since January (1-12)

	@MONTH
	Name of the month

	@MSECS
	Milliseconds part of the current time

	@ONWOW64
	If this macro returns 1, KiXtart is running in the WOW64 environment on an Windows x64 system.

	@PID
	Process ID of the KiXtart process

	@PRIMARYGROUP*
	Current user's primary group

	@PRIV
	User's privilege level (GUEST, USER, ADMIN)

	@PRODUCTSUITE
	OS suite. Combination of any of the following values:

1 - "Small Business"
2 - "Enterprise"
4 - "BackOffice"
8 - "CommunicationServer"
16 - "Terminal Server"
32 - "Small Business (Restricted)"
64 - "EmbeddedNT"
128 - "DataCenter"
256 - "Single user Terminal Server"
512 - "Home Edition"
1024 - "Blade Server"
2048 - "Embedded (Restricted)"

4096 - "Security Appliance"

8192 - "Storage Server"
16384- "Compute Cluster Server"

	@PRODUCTTYPE
	OS type. Possible values:

"Windows 95"
"Windows 98"
"Windows Me"
"Windows NT Workstation"
"Windows NT Server"
"Windows NT Domain Controller"
"Windows 2000 Professional"
"Windows 2000 Server"
"Windows 2000 Domain Controller"
"Windows XP Home Edition"
"Windows XP Professional"
"Windows XP Professional Tablet PC"

"Windows XP Media Center Edition"

"Windows XP Starter Edition"

"Windows Server 2003"

"Windows Server 2003 Domain Controller"
"Windows Server 2003 R2"

"Windows Server 2003 R2 Domain Controller"
"Windows Vista Home Edition"

"Windows Vista Professional"

"Windows Vista Professional Tablet PC"

"Windows Vista Media Center Edition"

"Windows Vista Starter Edition"

"Windows Vista Server"

"Windows Vista Domain Controller"

	@PWAGE
	Password age

	@RAS
	Number of active Remote Access Service (RAS) connections

	@RESULT
	Returns command specific information (e.g.: the drive letter of an automatic redirection command)

	@RSERVER*
	KXRPC server used for the current session

	@SCRIPTDIR
	Directory of current script

	@SCRIPTEXE
	Name of KiXtart executable ("KIX32.EXE", "WKIX32.EXE")

	@SCRIPTNAME
	Name of current script

	@SERROR
	Error text corresponding with @ERROR

	@SID*
	Current user's Windows NT Security Identifier (SID)

	@SITE**
	Name of the site in which the system resides

	@STARTDIR
	Directory from which KiXtart was started

	@SYSLANG
	Full English name of the language of the operating system specified in the format defined by ISO Standard 639. (example : "0413Dutch (Standard)").

	@TICKS
	Returns the number of milliseconds that have elapsed since the system was started.

	@TIME
	Current time (in the format HH:MM:SS)

	@TSSESSION
	If this macro returns 1, KiXtart is running in a Terminal Server session.

	@USERID
	Current user's Windows NT user ID

	@USERLANG
	Full English name of the language selected by the current user specified in the format defined by ISO Standard 639. (example : "0413Dutch (Standard)").

	@WDAYNO
	Days since Sunday (1 – 7)

	@WKSTA
	Computer name

	@WUSERID
	Current user's Windows user ID

	@YDAYNO
	Days since January 1 (1 – 365)

	@YEAR
	Current year

*Available on computers running Windows 9x only if the KiXtart RPC service is running.

** Only available on clients with full Active Directory support.

Note

During the logon sequence, WUSERID is empty on computers running Windows 9x if Windows NT Networking has been configured as the system's primary network provider.

The following examples show the correct use of KiXtart macros:

@LM

"2.10"

@DATE

"1997/10/03"

DISPLAY @USERID + ".TXT"

displays the file "RUUDV.TXT"

CD "\DATA\" + @DOMAIN

changes the current directory to "\DATA\your-domain"

APPENDIX A: KiXtart on Windows 9x

The following paragraphs provide details on issues and considerations when running KiXtart 2010 on Windows 9x systems.

Thunking and the KiXtart RPC Service

Unlike Windows NT, Windows 9x does not provide all the Win32 APIs that KiXtart needs to gather information, such as the user's full name and group memberships. KiXtart uses two programming methods to solve this problem: thunking and Remote Procedure Calls (RPCs)

Thunking is the term used when connecting to a 16-bit API from a 32-bit application. The 16-bit APIs required by KiXtart are provided by Netapi.dll. Kx16.dll and Kx32.dll provide the so-called thunking layer required to connect to Netapi.dll.

Unfortunately, Netapi.dll still does not provide all the information that is of interest to KiXtart. Most notably, Netapi.dll does not provide access to the logon domain, the security identifier (SID), the primary group, the home drive and local groups. The KiXtart RPC service provides these missing pieces of information to KiXtart using Remote Procedure Calls (RPCs). The client side of the RPC interface is provided in Kx95.dll

The server side of the RPC interface is provided in Kxrpc.exe, and this should be installed and run on one or more Windows NT systems. The KiXtart RPC service can run on any Windows NT system: a workstation, a standalone server, or a logon server. The system must be either a member of the logon domain or a member of a resource domain that has a trust relationship with the logon domain.

Note

Using the KiXtart RPC service is optional. However, without it, extended information, such as local groups, is not available to Windows 9x systems.

Choosing Where to Install the KiXtart RPC Service

When considering where to install the KiXtart RPC service, you must decide how KiXtart locates servers running the KiXtart RPC service. The simplest choice is to install the KiXtart RPC service on all the logon servers in the logon domain, which automatically provides load balancing.

If the KiXtart RPC service cannot be installed on all logon servers, KiXtart must be directed to the server(s) running the service. This can be achieved using one of the following options:

(
Setting an environment variable before running KiXtart .
(
Adding a subkey to the registry of Windows 9x clients.

(
Adding an initialization file to the KiXtart startup directory.

These methods are described in full in the following sections.

By default, KiXtart tries the methods in the order specified above. If none of the methods result in a connection with a KXRPC service, KiXtart attempts to connect to the KXRPC service on the logonserver. Optionally, the order in which the methods are attempted can be changed using the RPCSearchOrder commandline parameter (‘/r’).
The RPCSearchOrder parameter expects a string of characters indicating the search order, where each method is represented by a single letter:

e
environment

r
registry

i
INI file

l
logonserver

Examples:

KIX32 <script> /r=li
; attempt logonserver first, then INI file

KIX32 <script> /r=er
; attempt environment first, then registry

KIX32 <script> /r=r
; attempt only the registry

Note that previous versions of KiXtart always first attempted to connect to the KiXtart RPC service on the logon server, followed by the settings in the environment, registry and/or INI file.

Setting a KXRPC Environment Variable

The KXRPC environment variable is set to a comma-delimited list of the full name of the server running the KiXtart RPC service. For example:

set kxrpc= \\MyServer

– Or –

set kxrpc= \\MyServer,\\AnotherServer

Adding a KiXtart Subkey to the Windows Registry

Another way to direct KiXtart to a server running the KiXtart RPC service is to add the following subkey to the registry of Windows 9x clients:

HKEY_LOCAL_MACHINE\Software\Microsoft\KiXtart
In the new KiXtart subkey, add a value called KXRPC with a REG_SZ data type. Set the value of KXRPC to a comma-delimited list of the full names of the KiXtart RPC servers.

Adding a Kixtart.ini File

KiXtart can also be directed to the KXRPC server by creating a Kixtart.ini file and placing it on the NETLOGON share of the logon server, or in the directory from which KiXtart is started.

Kixtart.ini contains a [KXRPCMapping] section, which can include an entry for each domain or workgroup that is to be enabled for use of KiXtart . Optionally, a Default= entry can be added to refer all unknown workgroups or domains to a specific KXRPC server.

The following is a sample Kixtart.ini file:

[KXRPCMapping]

MyDomain=\\MyServer1,\\MyServer2,\\MyServer3

YourDomain=\\YourServer

Default=\\ServerA,\\ServerB

Note

If multiple KXRPC servers are specified for one mapping, KiXtart connects to them in the sequence specified.

To install the KiXtart RPC service

1.
Copy Kxrpc.exe to a directory on the server that will run the service.

2.
At the command prompt, switch to that directory and type the following command:

KXRPC –install

3.
Start the service from the Services snap-in or using the following command:

NET START KXRPC
The KiXtart RPC service can be installed on a remote server using a utility such as SC, RSERVICE or XNET.

Note

The KiXtart RPC service should only be installed when necessary. Please see the previous paragraphs for details on when and where to install the service.

Updating the KiXtart RPC service

The KiXtart RPC service provided with version 4.20 and higher is not downward compatible with previous versions. If you choose to update the KIXtart RPC service, you must ensure to update the client-side (KX95.DLL) on all clients before you update the service. Failing to do so will cause clients using older versions of KX95.DLL to stop functioning correctly.

The proper steps to update to the latest version of the KiXtart RPC Service are:

1.
Update KX95.DLL on all clients.

2.
On the server(s), open a command prompt, switch to the directory on the server where you previously installed the service, and type the following command:

KXRPC –remove

3.
Copy the new version of Kxrpc.exe to the directory on the server where you previously installed the service.

4.
At the command prompt type the following command:

KXRPC –install

5.
Start the service from the Services snap-in or using the following command:

NET START KXRPC
The KiXtart RPC service can be installed on a remote server using a utility such as SC, RSERVICE or XNET.

Starting the KiXtart RPC Service

When it is installed, the KiXtart RPC service is configured to start automatically at system startup. After the initial installation, the service can be started from the Control Panel / Services applet or from the command prompt.

To start the KiXtart RPC service

1.
In the Control Panel / Services applet, select the KiXtart RPC service, and then click Start.

– Or –

2.
At the command prompt, type the following command:

net start kxrpc

Known Problems of KiXtart on Windows 9x

The following is a list of known issues that may be encountered when using KiXtart on Windows 9x:

(
If KiXtart is used on systems that are configured to run both Microsoft Networking client software and Novell Netware client software, compatibility issues can cause KiXtart to fail to retrieve network information and/or find any script. If these problems occur, make the following change in the registry of the affected clients:

HKEY_LOCAL_MACHINE

 System

 CurrentControlSet

 Services

 MSNP32

 Network Provider
CallOrder
[00 00 00 40] >change to> [00 00 00 20]

 NOVELLNP

 Network Provider
CallOrder
[00 00 00 20] >change to> [00 00 00 40]

(
When text is output to bottom-right position of the screen, the screen scrolls.

This issue is related to the Console API on Windows 9x.

(
Color is sometimes garbled when the screen is scrolled.

This problem is caused by the way Windows 9x handles color attributes.

(
On Windows 9x, SAVEKEY produces a hidden, read-only system file in the Windows System directory. On Windows NT, the same command produces a normal file in the current directory.

In either operating system, the file can be used with LOADKEY (after it has been made visible using ATTRIB).

(
On Windows 9x, if a network drive is removed that was redirected from My Computer or Windows Explorer, the drive remains visible in the Windows interface as a disabled or ghosted drive, and the drive is reconnected when the user clicks it.

This scenario can be prevented with an additional step. After the drive has been removed, delete the corresponding subkey from the registry. For example:

USE E: /d

DELKEY("HKEY_CURRENT_USER\Network\Persistent\E")

(
The logon script is sometimes skipped completely.

This problem can be caused by a sharing bug in Msnet32.dll. The bug was fixed in version 4.00.951 of Msnet32.dll. The latest version of this file is available from your local Microsoft(Product Support Services contact (refer to Q150589).

Another reason for the logon script to be skipped on Windows 9x is a space in the logon script field in NT User Manager. Although NT User Manager accepts multiple strings (and spaces) in the logon script field, Windows 9x fails to run the logon script.

(
The ShutDown function does not work reliably.

This problem is caused by the underlying Windows API. It may be fixed in a future version of Windows 9x. As a workaround, try the following command :

SHELL "%windir%\RUNDLL32.EXE user.exe,ExitWindows"
The ‘MAP ROOT’ issue.

The Windows redirector software on Windows 9x systems does not support the concept of so-called ‘deep’ redirections (i.e.: redirecting a drive to a directory below the sharelevel, e.g.: "\\SERVER\SHARE\USER"). As such, Novell’s MAP ROOT feature cannot be emulated. This is a limitation of the redirector software, and unfortunately, KiXtart cannot work around this.

Note

Deep redirections are possible on Windows NT or higher systems, both with the (NET) USE command as well as with the (external) SUBST command.

Running KiXtart with Lmscript Emulation

Normally, when a user logs on to a LAN Manager or Windows NT domain from Windows 9x, the Windows API responsible for processing the logon request starts a program called Lmscript to run the logon script. The sole responsibility of Lmscript is to inform the logon API when the logon script has finished by creating a semaphore file (also called a cookie).

Unfortunately, the original Lmscript.exe takes up a lot of memory. To solve this issue, KiXtart can be used as a replacement for Lmscript.exe. This not only saves memory, but also means that the Kix32.exe does not have to be read from the network during the logon sequence, as it is automatically run from the local hard disk. The benefit of this is minimal in a normal LAN environment, but can be substantial in a WAN or RAS environment.

To enable Lmscript emulation on computers running Windows 9x

1.
In the Windows\System folder, rename the original Lmscript.exe.

2.
Rename Kix32.exe to Lmscript.exe and then copy it to the Windows\System folder.

3.
In User Manager, in the Logon Script Name box, specify a KiXtart script as the logon script for the user (for example, Kixtart).

4.
At the end of the specified KiX script, add a line containing the COOKIE1 command to create the semaphore file.

(

Note

Users who do not use Lmscript emulation (such as users running Windows 9x on the LAN or users running Windows NT Workstation) cannot run the logon script unless there is also a batch file with the same name as the KiX script specified for the user.

The following example illustrates the use of such a batch file for a user named Fred.

	User name
	Fred

	Logon script
	Script1

	Contents of the Scripts directory on the logon server
	Script1.bat
Script1.kix
Kix32.exe

	Contents of Script1.bat
	@ECHO OFF
%0\..\Kix32 Script1
EXIT 0

	Contents of Script1.kix
	CLS
BIG
? "Hi, @USERID"
SLEEP 10
COOKIE1
EXIT 0

If Fred uses a computer running Windows NT to log onto the network, or if he uses a computer running Windows 9x with the original Lmscript.exe, Script1.bat starts and then in turn starts Kix32.exe with Script1.kix as the logon script. If he uses a computer running Windows 9x and logs on with Kix32.exe renamed as Lmscript.exe, Script1.kix runs automatically.

APPENDIX B: Error handling
To find out if a KiXtart command or function is successful, always check the @ERROR and @SERROR macros. Note that most functions also return the error code.

If @ERROR is zero, the previous command or function was successful. If @ERROR is non-zero, the value corresponds to the error code returned by the most recently executed Win32 API.
To find out what a specific error code means, please consult the list of Win32 error codes on the Microsoft Developer Network (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/system_error_codes.asp).
Where to find more information
If you are interested in discussing tips and tricks on KiXtart usage and/or in sharing sample scripts, please consider joining one of the international communities of KiXtart users. To do so, connect to one of the following sites:

http://kixtart.org
http://www.scriptlogic.com/kixtart
If you have feedback or questions regarding KiXtart, please contact kixtart2001@hotmail.com or ruudv@microsoft.com.
To find the latest versions of KiXtart, and more sample scripts and tips and tricks on KiXtart, please visit one of the following sites:
http://kixtart.org
http://www.scriptlogic.com/kixtart
http://kixhelp.com
http://kix.isorg.com/

http://home.wanadoo.nl/scripting/summary.htm

If you are interested in a ‘KiXtart-aware’ script-editor, please visit:
http://ultraedit.com
http://www.adminscripteditor.com
http://www.textpad.com
If you want to read more about KiXtart, please consider this excellent book:

http://www.kixscripts.com/book/overview.html, now available in hard copy from Mann Publishing: http://www.mannpublishing.com/Catalog/BookDetail.aspx?BookID=31.
Acknowledgements

KiXtart is the result of feedback, suggestions and ideas from people all over the world and from all types of organizations. Their passionate discussions, frantic testing and even scripting competitions have greatly helped to produce the truly exciting end result that is now called KiXtart 2010.

I would like to express my sincerest thanks to all of you, and by all means: Keep Scripting!
Very special thanks go out to all the enthusiastic die-hards who over the years supported KiXtart (and kept me alive) by hosting and/or actively participating in KiXtart web-sites, forums, mail-lists and bulletin boards. The group of people involved is far too large to list in full, but some names absolutely require mentioning: Steve Wilson, Steve Ognibene, Larry Duncan, Brian Styles, Jim Kay, Jooel Nieminen, Howard Bullock, Bob Kelly, Shawn Tassie, Kevin Cowans, Kent Dyer, Les Ligetfalvy, Erik Kærholm, Jochen Polster, Chris Matheson, Bryan Steele, Brad Schunk, Ben Burnett, Rob Butler and of course Henri Wiering of http://kixtart.org: thanks guys, you really make a difference!
Once again, my sincerest thanks to all of you, and I hope to meet you again in the next release…!

About KiXtart

KiXtart is a spare time project of Ruud van Velsen of Microsoft Netherlands.

KiXtart was developed on Windows XP using Microsoft Visual Studio, Microsoft Visual C 6.0 SP5, Microsoft Assembler 6.1 and the Windows 32 Software Development Kit.

The SPK format used by the PLAY command was originally designed by Gordon E. Peterson II. The SPK files were translated from BASIC and Assembler programs gathered from various public domain sources.

Disclaimer and distribution information.
THE INFORMATION AND CODE PROVIDED AS PART OF KIXTART (HEREUNDER COLLECTIVELY REFERRED TO AS "SOFTWARE") IS PROVIDED AS IS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL RUUD VAN VELSEN OR MICROSOFT CORPORATION OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, LOSS OF BUSINESS PROFITS OR SPECIAL DAMAGES, EVEN IF RUUD VAN VELSEN OR MICROSOFT CORPORATION OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES SO THE FOREGOING LIMITATION MAY NOT APPLY.

This Software is provided to you as CareWare. This Software may be copied, installed and evaluated royalty-free subject to the following conditions:

1.
If you continue to use the Software, you are requested to make a charitable donation as described in the paragraph "

KiXtart: Do You Care?
"

2.
You must copy all Software without modification and must include all pages.

3.
You must place all copyright notices and other protective disclaimers and notices contained on the Software on all copies of the Software.

4.
You may not distribute this Software for profit.

5.
Distribution of this Software as part of a commercial product or service requires written consent from the author of this Software.

6.
You agree to indemnify, hold harmless, and defend Ruud van Velsen, Microsoft and its suppliers from and against any claims or lawsuits, including attorneys' fees, that arise or result from the use or distribution of the Software.

Copyright© 2005 Ruud van Velsen. All rights reserved.

